期刊文献+

衬底温度对常压MOCVD生长的ZnO单晶膜的性能影响 被引量:9

Effect of Growth Temperature on Properties of Single Crystalline ZnO Films Prepared by Atmospheric MOCVD
下载PDF
导出
摘要 以 H2 O作氧源 ,Zn(C2 H5) 2 作 Zn源 ,N2 作载气 ,在 5 0 m m Al2 O3(0 0 0 1)衬底上采用常压 MOCVD技术生长出高质量的 Zn O单晶薄膜 .用 X射线双晶衍射、原子力显微镜和光致发光技术对样品进行了综合表征 ,报道了 Zn O单晶膜的 (10 2 )非对称衍射结果 .研究结果表明 ,在 5 0 0~ 70 0℃范围内随生长温度升高 ,Zn O薄膜的双晶摇摆曲线半峰宽增宽 ,表面粗糙度减小 ,晶粒尺寸增大 ,在衬底温度为 6 0 0℃时生长的 Zn O膜的深能级发射最弱 . High quality ZnO single crystal films are successfully grown on the 50mm (0001) sapphire substrates by atmospheric MOCVD,using H 2O and Zn(C 2H 5) 2 as O and Zn sources,respectively,and N 2 as carrier gas.The properties of the samples(unannealed) are examined by double crystal X-ray diffraction(DCXRD),atomic force microscopy(AFM),and room temperature PL spectra.The results of ZnO (102) plane ω-rocking curve and ω-2θ scan are reported too.The influence of growth temperature from 500℃ to 700℃ on the properties of ZnO thin films is studied.The results show that with the increase of growth temperature the full width at half maximum(FWHM) of DCXRD becomes wider,but the surface becomes smoother,and the grain size becomes larger.The smallest DCXRD FWHM of ZnO(002) plane of the samples is 265″(ω-2θ scan) and 351″(ω-rocking curve),while the smallest FWHM of ZnO(102) plane is 568″(ω-2θ scan) and 656″(ω-rocking curve).The smallest RMS roughness of the samples is 2.451nm(10μm×10μm area),and the largest mean diameter of grain size of the samples is 1.6μm.The peak intensity of ultraviolet emission of PL spectra is very strong,while that of the deep level emission(green-yellow band) of the sample grown at 600℃ is the weakest.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第12期1628-1633,共6页 半导体学报(英文版)
基金 国家高技术研究发展计划专项经费资助项目 (编号 :2 0 0 3 AA3 0 2 160 )~~
  • 相关文献

参考文献3

二级参考文献28

  • 1张德恒,Brod.,DE.用射频偏压溅射制备的具有快速紫外光响应的ZnO薄膜[J].Journal of Semiconductors,1995,16(10):779-782. 被引量:7
  • 2李剑光,叶志镇,赵炳辉,袁骏.硅基上直流反应磁控溅射沉积优质ZnO薄膜及其性能研究[J].Journal of Semiconductors,1996,17(11):877-880. 被引量:15
  • 3Jeong S , Kim B , Lee B . Appl Phys Lett , 2003, 82(16), 2625.
  • 4Kazunori M , Yasushi K , Yuklnobu K , et al. Jpn J Appl Phys, 1997, 36(11A), 1453.
  • 5Carlotti G , Socino G ,Appl Phys Lett,1987, 51(23),1889.
  • 6Koike J , Shimoe K, leki H, et al. Jpn J Appl Phys , 1993, 32(5b), 2337.
  • 7Tang Z, Wong G, Yu P ,et al. Appl Phys Lett,1998, 72(25), 327.
  • 8Chen Y, Bagnall D , Zhu Z , et al. J Cryst Growth,1997, 181(1,2), 165.
  • 9Bagnall D ,Chen Y ,Zhu Z,et al.Appl Phys Lett,1997, 70(17), 2230.
  • 10Segawa Y , Ohtomo A , Kawasaki M , et al. Phys Stat Sol,1997, 202(2), 669.

共引文献65

同被引文献128

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部