期刊文献+

全局稳定的机器人CMAC标称补偿跟踪控制研究

GLOBALLY STABLE TRACKING CONTROL OF ROBOT MANIPULATORS BASED ON CMAC DESIRED COMPENSATION
原文传递
导出
摘要 提出了一种新的小脑模(Cerebellar Model Articulation Controller,CMAC)神经网络标称补偿控制器.采用二阶扩展B样条CMAC网络平滑逼近机器人标称模型,消除了常规神经网络控制对输入的严格假设.为了确保系统闭环的全局稳定性,采用Lyapunov直接法设计网络权值的更新律,并引入非线性反馈项完全抵消补偿的残留项.未知的CMAC逼近误差和系统随机干扰,通过一个简洁的鲁棒自适应律估计.最后,针对两自由度机器人的仿真实例验证了所提算法的有效性. A new neuro-controller based on the Cerebellar Model Articulation Controller (CMAC) desired compensation is proposed in this paper. A 2nd-order expended B-spline CMAC is used to approach the desired model of robot manipulators and it eliminates the rigid assumption on Neural Network (NN) inputs which is needed in conventional neuro-controller. In order to insure the global stability of the closed-loop systems, the weights update law is designed based on the Lyapunov direct method, and the nonlinear feedback terms is introduced to fully counteract the compensated residual terms. A simple robust adaptive law is used to estimate the unknown approach errors and bound random disturbances. Finally, the proposed algorithm is verified through simulation study on a two degree of freedom (2-DOF) robot.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2004年第4期385-389,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60175015)
关键词 全局稳定 小脑模型网络 标称补偿 跟踪控制 Globally Stable Cerebellar Model Articulation Controller Desired Compensation Tracking Control
  • 相关文献

参考文献8

  • 1Lewis F L, Yesildirek A, Liu K. Neural Net Robot Controller:Structure and Stability Proofs. Journal of Intelligent and Robotic Systems: Theory ~ Applications, 1995, 12(3): 277-299
  • 2Wai R J. Tracking Control Based on Neural Network Strategy for Robot Manipulator. Neurocomputing, 2003, 51:425-445
  • 3白萍,方廷健,葛运建.基于神经网络补偿的机器人稳定自适应控制[J].模式识别与人工智能,2001,14(2):162-165. 被引量:4
  • 4Miller W T, Hewes R H, Glanz F H, et al. Real Time Dynamic Control of an Industrial Manipulator Using a Neural-Network-Based Learning Controller. IEEE Trans on Robotics and Automation, 1990, 6(1): 1-9
  • 5Horng J H, Hsiseh J G. Adaptive Tracking Control of a Class of Nonlinear Systems Using CMAC Neural Network. Journal of Franklin Institute, 1996, 333B(6): 861-878
  • 6Sun F C, Sun Z Q. Stable Neuro-Adaptive Control of Robots with the Upper Bound Estimated on the Neural Approximation Errors. Journal of Intelligent and Robotic Systems, 1999, 26:91 - 100
  • 7Lans S H, Handelman D A, Gelfand J J. Theory and Development of High Order CMAC Neural Network. IEEE Control Systems Magazine, 1992, 12(2): 23-30
  • 8Sadengh N, Horowitz R. Stability and Robustness Analysis of a Class of Adaptive Controllers for Robotic Manipulators. The International Journal of Robotics Research, 1990, 9(3): 74-92

二级参考文献3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部