期刊文献+

基于冲量权值的ART神经网络及其在地震预报中的应用 被引量:2

Impulse Force Based ART Network with GA Optimization and its Application to Earthquake Prediction
下载PDF
导出
摘要 在传统的ART(AdaptiveResonanceTheory)网络结构中忽略了样本属性重要性的不同对分类结果产生的影响。然而实际应用中,需要在网络预测阶段对此予以重视。该文提出了基于冲量权值的ART网络IFWART(ImpulseForceWeightbasedAdaptiveResonanceTheory)。它引入冲量权值表示属性的重要性,通过进化算法的优胜劣汰机制优化冲量权值,并将量化的权值结果分配到网络的比较层中,从而提高网络预测精度。在UCI标准数据集上将IFWART与其他有监督ART网络进行了比较实验,验证了IFWART的有效性。最后,将其应用于地震强震时间序列预报中,取得了很好的效果。 The different affects of input attributes on category results in supervised ART(Adaptive Resonance Theory)network,quite important during the predictive stage in the application,have been ignored by traditional researches.In fact,some of the attributes will have larger effect than the others on category results.However,even for the experts in that field,it is difficult to evaluate the effect.In this paper a novel supervised ART network named Impulse Force Weight based Adaptive Resonance Theory(IFWART) network is proposed.It enhances the prediction accuracy of the supervised ART network by using Genetic Algorithm optimized Impulse Forces on attributes.Then some experiments on benchmark data sets are given to show its good performance.Finally,it is applied to predict the earthquake time serial in mainland of China.The result is satisfactory.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第5期229-232,共4页 Computer Engineering and Applications
基金 国家自然科学基金项目(批准号:60203011) 上海市科委青年科技启明星计划(批准号:01QD14022) 上海市高等学校科学技术发展基金项目(批准号:02AK13)资助
关键词 权值 属性重要性 神经网络 标准数据 进化算法 表示 时间序列 冲量 实际 比较实验 ART neural network,Genetic Algorithm,earthquake prediction
  • 相关文献

参考文献12

  • 1周志华,陈兆乾,netra.nju.edu.cn,陈世福.基于域理论的自适应谐振神经网络分类器[J].软件学报,2000,11(5):667-672. 被引量:13
  • 2国家地震局震害防御司.中国近代地震目录[M].北京:中国科技出版社,1999..
  • 3G A Carpenter, S Grossberg, J N Reynolds. ARTMAP: Supervised real-time learning and classification of nonstationary data by a selforganizing neural network[J].Neural Networks,Tech Rep CAS/CNSTR_91_001,1991 ;4: 565~588.
  • 4G A Carpenter,S Grossberg,N Markuzon et al. Fuzzy ARTMAP:Aneural network architecture for incremental supervised learning of analog multidimensional maps[J].IEEE transactions on neural networks,1992;3(5) :698~713.
  • 5David Weenink. Category ART:A variation on adaptive resonance theory neural net[C].In:IFA Proceedings 21,1997:117.
  • 6A H Tan. CascadeARTMAP:Integrating neural computation and symbolic knowledge processing[J].IEEE Transaction on Neural Networks,1997; 8 (2): 237~250.
  • 7A H Tan.Adaptive Resonance Associative Map[J].Neural Networks,1995 ;8(3 ) :437~446.
  • 8G A Carpenter,S Grossberg,N Markuzon et al. FuzzyART:Fast stable learning and categorization of anolog patterns by an adaptive resonance system[J].Neural Networks, 1991 ;4:759~771.
  • 9M Georgiopoulos,J Huang,G L Heileman. Properties of learning in ARTMAP[J].Neural Networks, 1994;7(3) :495~506.
  • 10Carpenter G A,Grossberg S.A massively parallel architecture for a self-organizing neural pattern recognition machine[J].Computer Vision,Graphics, and Image Processing, 1987 ;37:54~115.

二级参考文献2

共引文献13

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部