期刊文献+

锂离子电池电解液过充添加剂的行为 被引量:20

Behavior of overcharging additives for electrolyte used in Li-ion batteries
下载PDF
导出
摘要 制备了 3种 1mol/LLiPF6电解液 ,溶剂组成分别为 :1)碳酸乙烯酯 ,碳酸二甲酯和碳酸甲乙酯 ;2 )碳酸乙烯酯 ,碳酸二甲酯 ,碳酸甲乙酯和 4 %联苯 ;3)碳酸乙烯酯 ,碳酸二甲酯 ,碳酸甲乙酯和 4 %环己基苯。采用线性电压扫描法、锂循环效率法、锂离子电池的循环性能法和 3C倍率过充的方法测试了联苯与环己基苯电解液过充添加剂的行为。结果表明 :环己基苯是一种较实用的锂离子电池电解液过充添加剂 ,环己基苯的电化学稳定性比联苯的高 ,环已基苯的氧化电势为 4 .72V(vsLi/Li+ ) ,联苯的为 4 .5 4V(vsLi/Li+ ) ;以 1mA电流循环 2 0次后 ,联苯的铂电极锂循环效率为 15 .7% ,环己基苯的为 5 9.3% ;锂离子电池以 1C循环 15 0次后 ,环己基苯的容量保持率为 88% ,联苯的为 76 .3%。环己基苯与联苯添加剂都改善了锂离子电池的耐过充性能 。 Three kinds of 1 mol/L LiPF_6 electrolytes were prepared in various mixed solvents. The components of the electrolytes were as follows: 1) ethylene carbonate (EC), dimethylene carbonate (DMC), ethylmethyl carbonate (EMC); 2) EC, DMC, EMC+4% biphenyl (BP); 3) EC, DMC, EMC+4% cyclohexylbenzene (CB). The behaviors of electrolytes were analyzed by linear sweep voltage, lithium cycling efficiency, cycling performance and overcharging with 3C of lithium-ion batteries. The results show that CB is a kind of practical overcharging additive for electrolyte. The CB exhibits better electrochemical stability than BP due to the oxidation potential 4.72 V vs Li/Li^+ for CB and 4.54 V vs Li/Li^+ for BP. The lithium cycling efficiency of Pt electrode is 15.7% for BP electrolyte and 59.3% for CB electrolyte after 20 cycles with 1 mA. The capacity holding ratio of prismatic lithium-ion batteries is 88% for CB electrolyte and (76.3%)for BP electrolyte after 150 cycles at 1C. The overcharging tolerance of the lithium-ion batteries with CB and BP electrolyte are improved, and both of efficiencies are similar.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2004年第12期2125-2130,共6页 The Chinese Journal of Nonferrous Metals
关键词 联苯 环己基苯 电解液 锂离子电池 过充 biphenyl cyclohexylbenzene electrolyte lithium-ion battery overcharging
  • 相关文献

参考文献17

  • 1Tobishima S I, Yamaki J I. A consideration of lithium cell safety[J]. J Power Sources, 1999, 81 -82:882 -886.
  • 2Tobishima S, Takei K, Sakurai Y, et al. Lithium ion cells safety[J]. J Power Sources, 2000, 90(2): 188 -195.
  • 3Gerardine G B, Ralph E W, Zhang Z M. Thermal stability of LiPF6-EC: EMC electrolyte for lithium ion batteries[J]. J Power Sources, 2001, 97- 98: 570-575.
  • 4Gnanaraj J S, Zinigrad E, Asraf L, et al. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions[J]. J Power Sources, 2003, 119- 121: 794-798.
  • 5Katayama N, Kawamura T, Yasunori B, et al. Thermal stability of propylene carbonate and ethylene carbonate-propylene carbonate-based electrolytes for use in Li cells[J]. J Power Sources, 2002, 109(2): 321 -326.
  • 6Stallworth P E, Fontanella J J, Wintersgill M C, et al. NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes[J]. J Power Sources, 1999, 81-82: 739-747.
  • 7Tobishima S, Sakurai Y, Yamaki J. Safety characteristics of rechargeable lithium metal cells[J] . J Power Sources, 1997, 68(2): 455-458.
  • 8Yamaki J, Tobishima S, Sakurai Y, et al. Safety evaluation of rechargeable cells with lithium metal anodes and amorphous V2O5 cathodes[J]. J Appl Electrochem, 1998, 28(2): 135- 140.
  • 9Abraham K M, Pasquariello D M, Willstaedt E B, et al. n-butylferrocene for overcharge protection of secondary lithium batteries[J]. J Electrochem Soc, 1990,137(6): 1856 - 1857.
  • 10Golovin M N, Wilkinson D P, Dudley J T, et al. Application of metallocenes in rechargeable lithium batteries for overchargeable protection [J]. J Electrochem Soc, 1992, 139(1): 5- 10.

同被引文献242

引证文献20

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部