期刊文献+

子群的π-可补性对群结构的影响 被引量:5

The influence of π-supplemented subgroups on the structure of finite groups
下载PDF
导出
摘要 如果存在G的一个子群K,使得G=HK且|H∩K|π=1,则群G的一个子群H称为在G中π-可补,此时K称为H在G中的π-补.研究了π-可补子群的一些性质,并利用群G的Sylowp-子群的极大和极小子群的π-可补性,给出了群G为p-幂零群的一些条件.特别地证明了如下结果:设G是一个群,P是G的一个Sylowp-子群,p∈π且p是|G|的一个素因子,如果(|G|,p-1)=1且P的每个极大子群在G中π-可补,则G是p-幂零群. If there exists a subgroup K of G such that G=HK and |H∩K|_π=1, then a subgroup H of G is said to be π-supplemented in G. The authors give some sufficient conditions under which a group G is p-nilpotent by using π-supplementility of maximal subgroup and minimal subgroup of Sylow p-subgroup of G. Particularly, prove the following result: Let G be a group, p∈π and p be a prime divisor of |G|. If (|G|,p-1)=1 and every maximal subgroups of Sylow p-supgroup of G is π-supplemented in G, then G is p-nilpotent.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2005年第1期1-3,共3页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10471118)
关键词 π-可补子群 SYLOW子群 P-幂零群 π-supplemented subgroups Sylow subgroup p-nilpotent group
  • 相关文献

参考文献8

  • 1缪龙,於遒,朱路进.极小子群对有限群构造的影响[J].扬州大学学报(自然科学版),2003,6(4):1-3. 被引量:5
  • 2KEGEL O H. Produkte nilpotenter gruppen [J]. Arch Math (Basel), 1961, 12: 90-93.
  • 3WANG Y M. Finite groups with some subgroups of Sylow subgroups c-supplemented [J]. J Alg, 2000, 224(2): 467-478.
  • 4GUO X Y, SHUM K P. The influence of minimal subgroups of focal subgroups on the structure of finite groups [J]. J Pure Appl Alg, 2002, 169(1): 43-50.
  • 5MIAO L. The influence of minimal subgroups on the structure of finite groups [J]. Math Sci Res J, 2004,8(6): 161-169.
  • 6GUO W B. The theory of classes of groups I-M-]. Beijing-New York-Dordrecht-Boston-London: Science Press-Kluwer Academic Publishers, 2000.
  • 7ROBINSON D J S. A course in the theory of groups [M]. New York-Heidelberg-Berlin.. Springer-Verlag,1982.
  • 8GROSS F. Conjugaey of odd order Hall subgroups [J]. Bull London Math Soc, 1987, 19: 311-319.

共引文献4

同被引文献41

  • 1徐明曜.有限群导引[M].北京:科学出版社,1987.62.
  • 2徐明曜.有限群导引[M].北京:科学出版社,2007.
  • 3ARAD Z, WARD M B. New criteria for the solvability of finite groups [J]. J Algebra, 1982, 77(1) : 234-246.
  • 4WANG Yan-ming. C-normality of groups and its properties [J]. J Algebra, 1996, 180(3): 954-965.
  • 5WANG Yan-ming. Finite groups with some subgroups of Sylow subgroups c-supplemented [J]. J Algebra, 2000, 224(2):467-478.
  • 6BALLESTER-BOLINCHES A, WANG Yan-ming, GUO Xiu-yun. C- supplemented subgroups of finite groups [J]. Glasgow J Math, 2000, 42(3) : 383-389.
  • 7MIAO Long, GUO Wen-bin. Finite groups with some primary subgroups -s-supplemented [J]. Comm Algebra, 2005, 33(3):2789-2800.
  • 8MIAO Long, LEMPKEN W. On M-supplemented subgroups of finite groups [J]. J Group Theory, 2009, 12(2): 271-287.
  • 9MIAO Long, WANG Yan-ming. M-supplemented subgroups and their properties [J]. Comm Algebra, 2009, 37(2):594-603.
  • 10GUO Wen-bin. The theory of classes of groups [M]. Beijing: Science Press-Kluwer Acad Publ, 2000: 36-50.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部