期刊文献+

算术数列中三个或多个素数的和 被引量:1

Sums of three or more primes in arithmetical progressions
下载PDF
导出
摘要 作为圆法的应用,考虑算术数列中的素变数方程p1+p2+…+pk=N,pj≡gj(modh),j=1,2,…,k,∑1≤j≤kgj≡N(modh),k≥3,利用FRIEDLANDER和GOLDSTON的方法给出了方程解数的渐近公式:设k≥3,Θ=sup{β:L(β+iγ)=0},ε>0,h是给定的正整数,则∑p1+p2+…+pk=N,pj≤N,pj≡gj(modh),1≤j≤k(lnp1)(lnp2).….(lnpk)=((k-1)!)-1Nk-1G(k,N)+O(Nk-2+Θ+ε+Nηk+ε),其中G(k,N)是奇异级数,η3=9/5,η4=13/5,ηk=0(k≥5). As one application of circle method, the object of this paper is to consider the equation (p_1+)p_2+…+p_k=N with p_j≡g_j(mod()h), j=1,2,…,k, ∑_(1≤j≤k)g_j≡N(mod()h), k≥3, and to give a representable asymptotic formula by means of the method of FRIEDLANDER and GOLDSTON. That is, suppose k≥3, Θ=sup{β:L(β+iγ)=0}, ε>0, h is a given positive integer, then ∑_(p_1+p_2+…+p_k=N,p_j≤N,p_j≡g_j(mod h),1≤j≤k)(ln()p_1)(ln()p_2)·…·(ln()p_k)= ((k-1)!)^(-1)N^(k-1)G(k,N)+O(N^(k-2+Θ+ε)+N^(η_k+ε)), where G(k,N) is the singular series, η_3=9/5, η_4=13/5, η_k=0 (k≥5).
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2005年第1期4-8,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10171076) 上海市科委基金资助项目(03JC14027)
关键词 算术数列 哥德巴赫问题 素数和 arithmetical progression Goldbach problem sums of primes
  • 相关文献

参考文献4

二级参考文献20

  • 1余新河.哥德巴赫猜想的新尝试[J].福建师范大学学报(自然科学版),1993,9(2):1-8. 被引量:8
  • 2王天泽,陈景润.素变数线性三角和的估计[J].数学学报(中文版),1994,37(1):25-31. 被引量:6
  • 3王天泽,李国强.算术数列中三素数定理的实效证明[J].河南大学学报(自然科学版),1995,25(2):1-6. 被引量:1
  • 4Hardy G H, Littlewood J E, Some problems of “patitio numerorum”Ⅲ: On the expression of a number as a sum of primes, Acta Math., 1923, 44: 1-70.
  • 5Vinogradov I M, Some theorems concerning the theory of primes. Math. Sb., N. S., 1937. 2: 179-195.
  • 6Rademacher H A, Ueber eine Erweiterung des Goldbachschen Problems, Math. Zeit,1926 25.
  • 7Ayoub R, On Rademacher's extension of the Goldbach-Vinogradov theorem, Trans. Arner. Math. Soc.,1953, 74: 482-491.
  • 8Zulauf A, Beweis einer Erweiterung des Satzes yon Goldbach-Vinogradov, J Reine Angew. Math., 1952,190: 169-198.
  • 9Liu M C, Wang T Z, On the equation a1P1 +a2p2 +a3p3=b with prime variables in arithmetic progressions,CRM Proceedings and Lecture Notes, AMS Press. 1999. 19: 243-263.
  • 10Liu M C, Zhan T, The ternary Goldbach problem With primes in arithmetic progressions, In: Analytic Number Theory (Kyoto, 1996) (London Mcth. Soc. Lecture Note Set. 247, ed. Y. Motohashi), 227-251,Cambridge University Press. 1997.

同被引文献2

  • 1FRIEDLANDER J B,GOLDSTON D A. Sums of three or more primes[J]. Trans Amer Math Soe, 1997,349:287-319.
  • 2ZHANG Zhenfeng. Some additive problems with primes in arithmetic progressions[D]. Beijing:Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 2001.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部