期刊文献+

近红外漫反射光谱在人体血糖无创检测中的应用 被引量:5

Application of NIR Diffusion Reflectance Spectrum Technology in the Noninvasive Measurement for Human Blood Glucose
下载PDF
导出
摘要 采用近红外漫反射光谱技术对人体血糖进行了无创检测。实验使用Nexus-870傅立叶红外光谱仪及其光纤附件,采集了 6名不同年龄健康志愿受试者手腕处的近红外漫反射光谱。对光谱进行了平滑、基线校正和二次求导预处理,采用偏最小二乘 (PLS)方法在含有葡萄糖吸收峰的 7500~8500cm-1波段建立同一个体、相同年龄段的不同个体、以及不同年龄段的不同个体的校正模型。采集漫反射光谱的同时抽适量的血样在 752型紫外光栅分光光度计上标定血糖的实际值,并对校正模型计算值和实际标定值进行了比较,结果表明个体建模的相关性很好,相关系数达到 0. 99980,均方差在≤0. 346,误差分布在±0. 8mmol/l之间。对部分不参与建模的样品进行了预测,结果表明个体建模的自我预测结果好于该模型对其它个体样品的预测结果,预测误差≤0. 89544mmol/l。 The noninvasive measurement of human blood glucose is achieved with NIR diffusion reflectance spectrum technology.The wrist NIR diffusion reflectance spectrum of six healthy volunteers is collected using Nexus-870 and its NIR Fiberport Smart Accessory.The test is implemented with the changing of the blood glucose concentration.The calibration model is set up using PLS method with the smoothing,baseline correct and second derivatives pretreatment spectrum in 7500~8500cm^(-1) region for single volunteer and the combination of them.When the spectrum is got,the actual blood glucose value of every spectrum sample is demarcated using ultraviolet spectrophotometer.The relativity between the calibration value and the actual one for single volunteer is better than that of the combination,and the correlative coefficient is up to 0.99980.RMSEC are less than 0.364,and the error is between-0.8~0.8mmol/l.Some samples that are chosen optionally don’t participate in setting up calibration model,and they are predicted by themselves model and other’s model respectively.The result of self-model prediction is better than that of other (volunteer’s) model,and the error of the prediction is less than≤0.89544mmol/l.
出处 《激光与红外》 CAS CSCD 北大核心 2005年第2期96-99,共4页 Laser & Infrared
基金 中科院长春光机与物理研究所二期创新项目。
关键词 近红外漫反射光谱 血糖 预测 PLS NIR diffusion reflectance spectrum blood glucose PLS prediction
  • 相关文献

参考文献9

二级参考文献15

  • 1林方 丁海曙.-[J].世界医疗仪器,1998,4(4):20-20.
  • 2[1]Norris K H, Williams P C. Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. Ⅰ. influence of particle size[J]. Cereal Chemistry, 1984, 61(2): 158-165.
  • 3[2]Geladi Paul, Kowalski Bruce R. Partial least-squares regression: a tutorial[J]. Analytica Chimica Acta,1986, 185: 1-17.
  • 4[3]Geladi Paul, Kowalski Bruce R. An example of 2-block predictive partial least-squares regression with simulated data[J]. Analytica Chimica Acta, 1986, 185: 19-32.
  • 5[4]Haaland David M. Thomas Edward V. Partial least-squares methods for spectral analyses. 1. relation to other quantitative calibration methods and the extraction of qualitative information[J]. Anal. Chem., 1988, 60: 1193-1202.
  • 6[5]Mcshane Michael J, Cote Gerard L, Spiegelman Clifford H. Assessment of partial least-squares calibration and wavelength selection for complex near-infrared spectra[J]. Applied Spectroscopy, 1998, 52(6): 878-884.
  • 7Stephen F Malin,Timothy L Ruchti, Thomas B Blank, et al. Noninvasive Prediction of Glucose by Near-infrared Diffuse Reflection Spectroscopy [ J ]. Clinical chemistry, 1999,45 (9) : 1651 - 1658.
  • 8Jeffrey W Hall, Alan Pollard. Near-Infrared Spectrophotometry: A New Dimension in Clinical Chemistry [ J ]. Clinical Chemistry, 1992, 38 (9) : 1623 - 1631.
  • 9Michael J Mcshane, Gerard L, Clifford Spiegelman. Variable selection for quantitative determination of glucose with near-infrared spectroscopy[ A]. SPIE, 1997,2952 :159 - 197.
  • 10Vidi A Saptari, Kamal Youcef-toumi. Sensitivity analysis of near infrared glucose absorption signals : toward noninvasive blood glucose sensing [ A ]. SPIE, 2000,4163 : 45-54.

共引文献53

同被引文献67

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部