期刊文献+

抛物问题的基于Crouzeix-Raviart元的有限体积元方法(英文)

Finite Volume Element Method with Crouzeix- Raviart Element for Parabolic Problems
下载PDF
导出
摘要 我们考虑了二维抛物问题的基于Crouzeix Raviart元的有限体积元方法.为了得到误差估计,我们引入Ritz投影并研究了它在H1和L2范数意义下的逼近性质.证明了微分方程的真解和有限体积元方程的解在H1和L2范数意义下的误差估计是最优的. We consider a finite volume element method with the Crouzeix Raviart element for two-dimensional parabolic problem.In order to get the error estimates,we introduce the Ritz projection and study its approximation properties.It is proved that the finite volume element approximation derived are convergent with the optimal order in H^1- and L^2-norm.
作者 毕春加
出处 《烟台大学学报(自然科学与工程版)》 CAS 2005年第1期16-23,共8页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(19972039 10271066) 烟台大学博士基金资助项目(SX03B20).
关键词 有限体积元方法 CROUZEIX-RAVIART元 抛物问题 误差估计 finite volume element method Crouzeix-Raviart element parabolic problem error estimates
  • 相关文献

参考文献8

  • 1Li Ronghua,Chen Zhongying,Wu Wei.Generalized Difference Methods for Differential Equations[M].New York:Pure and Applied Mathematics,Marcel Dekker,2000.226.
  • 2Bank R E,Rose D J.Some error estimates for the box method[J].SIAM J Numer Anal,1987,24:777~787.
  • 3Bi Chunjia,Li Likang.The mortar finite volume element method with the Crouzeix-Raviart element for elliptic problems[J].Comp Meth Appl Mech Engrg,2003,192:15~31.
  • 4Cai Z.On the finite volume element method[J].Numer Math,1991,58:713~735.
  • 5Chatzipantelidis P.A finite volume method based on the Crouzeix-Raviart element for elliptic PDE's in two dimensions[J].Numer Math,1999,82:409~432.
  • 6Huang J G,Xi S T.On the finite volume element method for general selfadjoint elliptic problems[J].SIAM J Numer Anal,1998,35:1762~1774.
  • 7Schmidt T.Box schemes on quadrilateral meshes[J].Computing,1994,66:271~292.
  • 8Ciarlet P.The Finite Element Method for Elliptic Problems[M].Amsterdam:North Holland,1978.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部