期刊文献+

用遗传算法求解多目标0/1背包问题 被引量:3

Solving multiobjective 0/1 knapsack problems by genetic algorithms
下载PDF
导出
摘要 扼要介绍多目标优化的Pareto最优性概念 ,研究搜索多目标 0 1背包问题Pareto最优解集的快速遗传算法 (FPGA :fastParetogeneticalgorithms) .FPGA采用种群中非支配解的层次评价可行解的适应值 ,提出了一种快速非支配解层次辨识算法 ,辨识算法仅有O(n2 )数量级的计算复杂性 ;采用基于聚类概率排挤的小生态技术维持种群多样度和Pareto最优解集的分布均匀性。对多种多目标 0 1背包问题的仿真优化实验结果表明 ,FPGA能够以有效的计算成本搜索到精度高的、分布均匀的高质量Pareto非劣解集 ,其收敛速度和收敛准确性一致地优于代表性的强度Pareto进化算法 (SPEA) . This paper briefly describes Pareto optimality in multiobjective optimization, investigates a kind of fast Pareto genetic algorithms (FPGA) searching Pareto optima of multiobjective 0/1 knapsack problems. FPGA evaluates fitness of individuals using nondominated ranking. A kind of fast algorithm identifying nondominated ranking is proposed. It only has a computationae complexity of order O(n2). The niching method using probabilistic crowding based on clustering analysis is used to improve the population diversity and the distribution of Pareto nondominated solutions. Simulation optimization on various multiobjective 0/1 knapsack problems shows that FPGA is capable of finding out the evenly distributed nondominated solutions approximating to Pareto front, and the convergence rate as well as the accuracy is uniformly superior to that of the representative multiobjective evolutionary algorithms, the strength Pareto evolutionary approach (SPEA).
出处 《湖南理工学院学报(自然科学版)》 CAS 2004年第4期18-22,共5页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 国家自然科学基金 (5 0 2 75 170 ) 湖南省教育厅科学基金 (2 0 0 2A0 5 2 )
关键词 多目标优化 遗传算法 PARETO最优性 快速分层 0/1背包问题 multiobjective optimization genetic algorithm Pareto optimality fast nondominated ranking 0/1 knapsack problem
  • 相关文献

参考文献2

二级参考文献9

  • 1[1]Fonseca C M, Fleming P J. An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation, 1995, 3(1):1-16
  • 2[2]Osyczka A. Multicriteria optimization for engineering design. In: Gero J S ed. Design Optimization. Academic Press, 1985. 193-227
  • 3[3]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms. In: Proc 1st International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, Hillsdale, 1985. 93-100
  • 4[4]Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Proc 5th International Conference on Genetic Algorithms, 1993. 416-423
  • 5[5]Roy B. How outranking relation help multiple criteria decision making. In:Cochrane J L, Zeleny M eds. Multiple Criteria Decision Making. South Carolina: University of South Carolina Press, 1973. 179-201
  • 6[6]van Veldhuizen D A, Lamont G B. Multiobjective evolutionary algorithm test suites. In: Proc the 1999 ACM Symposium on Applied Computing, San Antonio, Texas, 1999. 351-357
  • 7[7]Thomas Back. Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press, 1996
  • 8[8]van Veldhuizen D A, Lamont G B. Evolutionary computation and convergence to a pare to front. In Koza J R ed. Late Breaking Papers at the Genetic Programming 1998 Conference. California: Stanford University, 1998. 221-228
  • 9曹先彬,罗文坚,王煦法.基于生态种群竞争模型的协同进化[J].软件学报,2001,12(4):556-562. 被引量:66

共引文献53

同被引文献22

  • 1高艳玲,姚娟.一种求解函数优化的混合遗传算法[J].河南机电高等专科学校学报,2004,12(5):55-55. 被引量:1
  • 2王跃宣,刘连臣,牟盛静,吴澄.处理带约束的多目标优化进化算法[J].清华大学学报(自然科学版),2005,45(1):103-106. 被引量:55
  • 3刘叶玲,朱艳伟.加权数据融合算法及其应用举例[J].西安科技大学学报,2005,25(2):253-255. 被引量:20
  • 4Martello S, Toth P. Knapsack Problems: Algorithms and Computer Implementations [ M ]. John Wiley & Sons Ltd. Chichester, England, 1990.
  • 5Martello S, Toth P. An Upper Bound for the Zero - one Knapsack Problem and a Branch and Bound Algorithm [ J ]. Journal of Operational Research, 2007, ( 1 ) : 169 - 175.
  • 6Andonov, Rajopadbye. A Sparse Knapsack Algo- tech -cult and its Synthesis [ C] //Int Conf. On Application - Specific Array Processors ( ASAP - 94 ). San Francisco, CA, IEEE Press, 1994:302 -313.
  • 7Anabela Simoes, Ernesto Costa. An Evolutionary Approach to the Zero / One Knapsack Problem: Testing Ideas from Biology [ C ] //Proceedings of the Fifth International Conference on Neural Networks and Genetic Algorithms, 2001: 236 - 239.
  • 8Bruno R. Preiss. Data Structures and Algorithms with Object - Oriented Design Patterns in C + + [ M ]. John Wiley & Sons Ltd, 1998.
  • 9李英华.求解几类复杂优化问题的算法[J].西安电子科技大学学报,2004,25(1):22-24.
  • 10王翠茹,周春雷,马建伟. 一种改进的人工鱼群算法及其在软件可靠性优化中的应用[J] . 计算机研究与发展,2005 , 4 ( 增刊):163-166.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部