期刊文献+

一个基于Bayesian学习的协商模型 被引量:1

A Negotiation Model Based on Bayesian Learning
下载PDF
导出
摘要 在Multi-Agent系统(MAS)中,每一个Agent都有不同的目标,通常只拥有对方的不完全信息,Agent需要具有解决在实现各自目标过程中所产生的各种矛盾的能力。协商是解决这些矛盾的一种有效途径。本文提出了一个基于Bayesian学习的协商模型NMBL:在每一轮协商中,Agent通过Bayesian学习获取协商对手的信息,更新对协商对手的信念,然后根据基于冲突点和不妥协度的协商策略提出下一轮的协商提议。NMBL把整个协商过程看成一个动态的交互过程,体现了Multi-Agent系统的动态特性,同时NMBL具有较强的学习能力。试验证明,该模型具有较好的协商性能。 In Multi-Agent systems where each Agent has a different goal, Agent must be able to solve conflicts aris- ing in the process of achieving its goal, with incomplete knowledge about other Agents. Negotiation is an effective ap- proach to solve these problems. This paper introduces a negotiation model based on Bayesian learning, called NMBL. Agent gets information of the negotiation opponents in every iteration by means of Bayesian learning, updates the pri- or knowledge of the negotiation opponents and then brings forward the offer of the next iteration according to negotia- tion strategies based on the conflicting point and un-compromising degree. NMBL regards the whole negotiation pro- cess as a dynamic interaction conduct, which reveals the dynamic characteristic of Multi-Agent systems' NMBL also has a relatively strong learning ability. The experiments show that this model has good negotiation performance.
出处 《计算机科学》 CSCD 北大核心 2005年第1期147-150,158,共5页 Computer Science
基金 重庆市科技攻关项目(7200-B-12)
关键词 Bayesian学习 协商模型 MULTI-AGENT系统 协商结构GNA Multi-Agent systems Negotiation Bayesian learning
  • 相关文献

参考文献15

  • 1祝世京,陈珽.一种冲突性的多人多目标决策模型[J].自动化学报,1993,19(3):316-322. 被引量:4
  • 2Sycara K. Multiagent Systems. Artifical Intelligence, 1998, 19(2): 79~92
  • 3Kraus S, Sycara K, Evenchik A. Reaching agreements through argumentation: a logical model and implementation. Artificial Intelligence, 1998,104:1 ~ 69
  • 4Parsons S, Sierra C, Jennings N R. Agents that reason and negotiate by arguing. Journal of Logic and Computation, 1998,8(3):261~292
  • 5Zlotkin G, Rosenschein J. Mechanisms for automated negotiation in state oriented domains. Journal of Artifical Intelligence Research, 1996,5:163~238
  • 6Binmore K. Fun and Games: A Text on Game Theory. D.C.Heath and Co. Press, 1992
  • 7Binmore K, Vulkan N. Applying Game Theory to Automated Negotiation. Paper prepared for the DIMACS Workshop on Economics, Game Theory and the Internet,at Rutgers University,New Brunswick, NJ, April 1997
  • 8Oliver J R. On Automated Negotiation and Electronic Commerce:[ PhD thesis]. University of Pennsylvania, 1997
  • 9Matos N, Sierra C, Jennings N R. Determining successful negotiation strategies: an evolutionary approach. In: Proc. 3rd Int.Conf. on Multi-Agent Systems, Paris, France, 1998. 182~ 189
  • 10Chao K-M, Anane R, Chen J H, Gatward R. Negotiating Agents in a Market-Oriented Grid. In: 2nd IEEE/ACM Intl. Symposium on Cluster Computing and the Grid, IEEE Computer Society,2002. 436~437

共引文献3

同被引文献10

  • 1刘小龙,唐葆君,邱菀华.基于灰色关联的企业危机预警案例检索模型研究[J].中国软科学,2007(8):152-155. 被引量:7
  • 2Jennings N P, Faratin P. Atonomous agents for business process management [J]. Journnal of Applied Artifieail Intelligece, 2000, 14 (2) : 145 189.
  • 3Braynov S,Sandholm T. Contracting with uncertain level of trust[J]. International Journal of Human- computer Studies, 2002,48 (4) : 501- 514.
  • 4Fatima S S, Wooldridge M, Jennings N R. An agenda-based framework for multi-ssue negotiation [J]. Artificial Intelligence, 2004,152 (1) : 1- 45.
  • 5McSherry D. Conversational case-based reasoning in medical decision making[J]. Artificial Intelligence in Medicine, 2011,52 (2) - 59 - 66.
  • 6Li H, Sun J. Business failure prediction using hybrid 2case-based reasoning [J] computers - Operations Research, 2010,37(1) -137- 151.
  • 7资武成.基于Multi—Agent的政府间协商决策模型研究[M].北京:北京理工大学出版社,2011.
  • 8Zhu M X, Luo X X, Chen X H. Wu D S. A non-functional requirements tradeoff model in Trustworthy Software [J]. Information Sciences, 2012,191.. 61-75.
  • 9罗新星,朱名勋,陈晓红.可信软件中非功能需求FO-QSIG冲突权衡模型[J].系统工程,2010,28(2):101-105. 被引量:7
  • 10徐晓臻,高国安.案例推理在多准则评价智能决策支持系统中的应用研究[J].计算机集成制造系统-CIMS,2001,7(1):16-18. 被引量:36

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部