期刊文献+

多项式乘除法的矩阵算法 被引量:3

A Matrix Algorithm for Multiplication and Division of Polynomials
下载PDF
导出
摘要 目的研究多项式乘、除法的矩阵算法.方法用矩阵方法,证明了文中给出的3个定理及2个推论.结果和结论解决了多项式乘法和两个多项式在整除及不能整除的情况下的快速计算问题. In this paper,the correctness in theory of the matrix algorithms has been proved by matrix as tool,induction of four definitions,giving three theorems and two corollaries derived from theorems under the condition of polynomials multiplications and polynomials division which can or cannot be divided exactly.
作者 孙玉红
出处 《沈阳建筑大学学报(自然科学版)》 CAS 2005年第1期76-77,80,共3页 Journal of Shenyang Jianzhu University:Natural Science
基金 辽宁省攻关计划项目(2004D249)
关键词 多项式 乘法 除法 矩阵算法 左因式阵 右因式阵 left factor matrix right factor matrix matrix algorithms divisor matrix quotient matrix remainder matrix
  • 相关文献

参考文献6

二级参考文献25

  • 1简金宝.三参数线性规划最优基的稳定性分析[J].Journal of Mathematical Research and Exposition,1993,13(4):605-610. 被引量:1
  • 2王玉清,王海明.两参数线性规划问题的解法[J].山西矿业学院学报,1996,14(1):102-107. 被引量:1
  • 3Fang S C,Puthenpura S.Linear optimization and extensions:Theory and Algorithms[M].Prentice Hail,Inc.,1993.
  • 4刘泽毅.科学计算技术与Matlab[M].北京:科学出版社,2001.
  • 5[1]Klee V, Ladner R and Manber R. Signsolvability revisited. Linear Algebra Appl., 1984, 59: 131-157.
  • 6[2]Klee V. Recursive structure of S-matrices and an O(m2) algorithm for recognizing strong sign solvability.Linear Algebra Appl., 1987, 96: 233-247.
  • 7[3]Gibson P M. Conversion of the permanent into the determinant. Proc. Amer. Math. Soc., 1971, 27:471-476.
  • 8[4]Green B C J, Olesky D D and van den Driessche P. Classes of sign nonsingular matrices with a specified number of zero entries. Linear Algebra Appl., 1996, 248: 253-275.
  • 9[5]Lundy T J, Maybee J S and Van Buskirk J. On maximal sign nonsingular matrices. Linear Algebra Appl.,1996, 247: 55-81.
  • 10[6]Brualdi R A, Chavey K L and Shader B L. Rectangular L-matrices. Linear Algebra Appl., 1994, 196:37-61.

共引文献7

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部