摘要
This paper reported some results about intrinsic nanocrystalline silicon thin films deposited by high frequency (HF) sputtering on p-type c-Si substrates at low temperature. Samples were examined by atomic force microscopy (AFM), X-ray diffraction (XRD), infrared absorption, and ellipsometry. XRD measurements show that this film has a new microstructure, which is different from the films deposited by other methods. The ellipsometry result gives that the optical band gap of the film is about 2.63 eV. In addition, the n-type nc-Si∶H/p-type c-Si heterojunction solar cell, which has open circuit voltage (U oc ) of 558 mV and short circuit current intensity (I sc ) of 29 mA/cm2, was obtained based on the nanocrystalline silicon thin film. Irradiated under AM1.5, 100 mW/cm2 light intensity, the U oc , I sc , and FF can keep stable for 10 h.
This paper reported some results about intrinsic nanocrystalline silicon thin films deposited by high frequency (HF) sputtering on p-type c-Si substrates at low temperature. Samples were examined by atomic force microscopy (AFM), X-ray diffraction (XRD), infrared absorption, and ellipsometry. XRD measurements show that this film has a new microstructure, which is different from the films deposited by other methods. The ellipsometry result gives that the optical band gap of the film is about 2.63 eV. In addition, the n-type nc-Si∶H/p-type c-Si heterojunction solar cell, which has open circuit voltage (U oc ) of 558 mV and short circuit current intensity (I sc ) of 29 mA/cm2, was obtained based on the nanocrystalline silicon thin film. Irradiated under AM1.5, 100 mW/cm2 light intensity, the U oc , I sc , and FF can keep stable for 10 h.
基金
TheNano-siliconFilmSolarCellofShanghaiScience&TechnologyCommittee(No.0216nm103)