期刊文献+

高次复多项式的Mandelbrot-Julia集 被引量:3

Mandelbrot-Julia Sets of the High Degree Complex Polynomials
下载PDF
导出
摘要 阐述了高次复多项式的 Mandelbrot-Julia 集(简称 M-J 集)理论,给出了高次复多项式 M-J 集的定义,并利用逃逸时间算法构造出一系列高次复多项式的 M-J 集。利用复变函数理论和计算机制图相结合的实验数学的方法,对 M-J 集的分形结构进行了深入研究,结果表明: 从理论上分析了 M 集的对称性; 通过定性地建立 M 集上 J 集的整体刻画,发现 M 集包含了 J 集构造的大量信息。 In this paper the theory of Mandelbrot-Julia sets of high degree complex polynomials is introduced, a series of the Mandelbrot-Julia sets of high degree complex polynomials is constructed through escape-time technique. After deeply research on Mandelbrot-Julia sets, the authors have done innovated work as follows: ① Theoretical analyze the nature of symmetry of generalized Mandelbrot-Julia sets; ② We find that Mandelbrot sets contain abundant information of structure of Julia sets by founding the whole portray of Julia sets based on Mandelbrot sets qualitatively.
作者 王兴元 刘波
出处 《工程图学学报》 CSCD 2004年第4期113-119,F003,共8页 Journal of Engineering Graphics
基金 国家自然科学基金资助项目(69974008) 辽宁省自然科学基金资助项目(972194)
关键词 计算机应用 分形 M-J集 临界点 高次复多项式 computer application fractal Mandelbrot-Julia sets critical points high degree complex polynomials
  • 相关文献

参考文献13

  • 1Mandelbrot B B. The fractal geometry of nature [M]. San Fransisco: Freeman W H, 1982. 5~47.
  • 2Peitgen H O, Saupe D. The science of fractal images [M]. Berlin: Springer-Verlag, 1988. 137~218.
  • 3Pickover C A. Computers pattern chaos and Beauty [M]. New York: St. Martin's Press, 1990. 43~105.
  • 4Wang Xingyuan, Liu Xiangdong, Zhu Weiyong, et al. Analysis of c-plane fractal images from for [J]. Fractals, 2000, 8(3): 307~314.
  • 5王兴元.Fractal structures of the non-boundary region of the generalized Mandelbrot set[J].Progress in Natural Science:Materials International,2001,11(9):55-62. 被引量:8
  • 6WANGXing-yuan.SWITCHED PROCESSES GENERALIZED MANDELBROT SETS FOR COMPLEX INDEX NUMBER[J].Applied Mathematics and Mechanics(English Edition),2003,24(1):73-81. 被引量:4
  • 7Blanchard P. Disconnected Julia sets [A]. In: Chaotic Dynamics and Fractals [C]. Barnsley M F, Demko S G eds, Orlando: Academic Press, 1986. 181~201.
  • 8Branner B. The parameter space for complex cubic polynomials [A]. In: Chaotic Dynamics and Fractals [C], Barnsley M F, Demko S G eds, Orlando: Academic Press, 1986. 169~179.
  • 9Sandy D B, Elizabeth L G , Clifford A R. Chaos and elliptic curves [J]. Computers & Graphics, 1994, 18(1): 113~117.
  • 10Drakopoulos V. On the additional fixed points of iteration functions associated with a one-parameter family of cubic polynomials [J]. Computers & Graphics, 1998, 22(5): 629~634.

二级参考文献19

共引文献9

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部