期刊文献+

算法复杂性平滑分析的研究进展与展望 被引量:2

Achievements and Prospects of Smoothed Analysis of Algorithms
下载PDF
导出
摘要 有很多算法其最坏情况复杂性很坏 (甚至是指数阶的 ) ,但在实际应用中却很有效 其中一个典型代表就是求解线性规划问题的单纯形算法 最近 ,Spielman和Teng提出了算法的平滑复杂性概念及算法复杂性平滑分析方法 ,对上述矛盾给出了合理的解释 ,在理论计算机科学界引起了极大的关注 为此 ,做了以下工作 :介绍算法复杂性平滑分析的基本概念 ;介绍两年多来算法复杂性平滑分析主要的研究进展 ;从实际应用出发提出一个更合乎算法复杂性平滑分析思想的随机扰动模型 (简称TSSP模型 ) ,克服“PartialPermutation”随机扰动模型的不足 ,并证明在TSSP模型下快速排序算法的时间平滑复杂性为O(2λn×log2 (n) ) ,其中λ是随机扰动幅度大小 最后 。 There are many algorithms that work exceedingly well in practice but are known to perform poorly in the worst-case or lack good worst-case analyses. One of the most typical examples is the simplex method for linear programming. Spilman and Teng introduced the smoothed analyis of algorithms to explain the above contradiction successfully. The algorithm community pays close attention to smoothed analysis. Some concepts and the main achievements related to smoothed analysis are presented. The random perturbation model TSSP is proposed, which can overcome some limitations of the Partial Permutation model. The TSSP model is used in the smoothed analysis of algorithms like quick-sorting, whose performance is mainly determined by the initial order of the elements of an instance. A smoothed analysis of quick-sorting under the TSSP model is performed and the smoothed time complexity of quick-sorting is proved as O(2λn×log 2(n)), where λ is the random perturbation magnitude. Several prospects on smoothed analysis of algorithms are presented.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第2期286-293,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目 (60 2 73 0 45 )
关键词 平滑分析 平滑复杂性 TSSP模型 k-邻域 smoothed analysis smoothed complexity TSSP-model k-neighborhood
  • 相关文献

参考文献9

  • 1Karl Heinz Borgwardt. The Simplex Method: A Probabilistic Analysis. New York: Springer-Verlag, 1980.
  • 2Daniel A. Spielman, Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. In: Proc. of the the 33rd Annual ACM Symp. on Theory of Computing. Hersonissos: ACM Press, 2001.
  • 3Daniel A. Spielman, Shang-Hua Teng. Smoothed analysis of algorithms. In: Proc. of the Int'l Congress of Mathematicians in 2002. Beijing: High Education Press, 2002. 1~3.
  • 4Cyril Banderier, Kurt Mehlhorn, Rene Beier. Smoothed analysis of three combinatorial problems. In: Proc. of the 28th Int'l Symp. on Mathematical Foundations of Computer Science.Prague: Springer-Verlag, 2003.
  • 5Avrim Blum, John Dunagan. Smoothed analysis of the perceptron algorithm for linear programming. In: Proc. of the 13th Annual ACM-SIAM Symp. on Discrete Algorithms. San Francisco:SIAM, 2002. 905~914.
  • 6Arvind Sankar, Daniel A. Spielman, Shang-Hua Teng. Smoothed analysis of the condition numbers and growth factors of matrices.In: Proc. of the 2002 Conf. on the Foundations of Computational Mathematics. Minnesota: Cambridge University Press, 2003.
  • 7Luca Becchetti, Stefano Leonardi, et al. Average case and smoothed competitive analysis of the multi-level feedback algorithm. In: Proc. of the 44th Annual IEEE Symp. on Foundations of Computer Science. Cambridge: IEEE Computer Society Press, 2003.
  • 8G. Nutt. Operating System Projects Using Windows NT.Boston: Addison Wesley, 1999.
  • 9A.S. Tanenbaum. Modern Operating Systems. New Jersey:Prentice-Hall Inc., 1992.

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部