期刊文献+

反蛋白石结构光子晶体制备技术 被引量:13

Fabrication Techniques of Inverse Opal Structure Photonic Crystal
下载PDF
导出
摘要 光子晶体是一种具有光子带隙的新型材料 ,由于其可以控制和抑制光子运动的特性 ,在光通讯领域具有广阔的应用前景。反蛋白石结构是光子晶体一种重要的结构 ,由于其制备方法简便、成本低廉而受到人们的普遍关注。本文在介绍目前常用的几种制备光子晶体技术的基础上 ,详细阐述了制备反蛋白石结构光子晶体的各种技术和方法。 Photonic crystal is one kind of new optical materials. Its photonic bandgap exhibits a unique optical property which has potentially valuable in a number of existing and emerging applications. Inverse opal structure is one of the important structures to fabricate photonic crystals. It has gained much attention because photonic crystals can be easily produced from inverse opal structure. In this paper, based on the introduction of several traditional fabrication methods of photonic crystals, different fabrication techniques on inverse opal structure photonic crystals are introduced in detail and recent advances in the 1-dimensional and 2-dimensional defects fabrication techniques are reviewed.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2004年第6期1022-1030,共9页 Journal of Synthetic Crystals
基金 教育部科学技术研究重点项目 (No .1 0 41 44 ) 广东省科技计划项目 (重大专项 ) (No.2 0 0 3A1 0 6 0 2 0 1 ) 教育部留学回国人员科研启动基金 (教外司留 [2 0 0 3] 40 6 )等项目资助
关键词 反蛋白石 光子晶体 一维 光子带隙 二维 领域 新型材料 光通讯 结构光 制备技术 photonic crystal inverse opal structure fabrication technique
  • 相关文献

参考文献28

  • 1Yablonovitch E. Inhibited Spontaneous Emission in Solid-state Physics and Electronics[J]. Phys. Rev. Lett., 1987,58: 2059-2062.
  • 2John S. Strong Localization of Photons in Certain Disordered Dielectric Superlattices[J].Phys. Rev. Lett.,1987,58: 2486-2489.
  • 3廖先炳.光子晶体技术——(一)光子晶体光纤[J].半导体光电,2003,24(2):135-138. 被引量:5
  • 4廖先炳.光子晶体技术——(二)光子晶体光波导[J].半导体光电,2003,24(3):212-216. 被引量:5
  • 5廖先炳.光子晶体技术——(三)光子晶体激光器[J].半导体光电,2003,24(4):286-289. 被引量:5
  • 6Ho K M, Chan C T , Soukoulis C M. Existence of a Photonic Gap in Periodic Dielectric Structures[J]. Phys. Rev. Lett. ,1990,65: 3152-3155.
  • 7茹宗玲,向安,高建平.光子晶体结构、制备技术和应用进展[J].电子元件与材料,2002,21(9):17-20. 被引量:3
  • 8Yablonovitch E, Gmitter T J. Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms[J]. Phys. Rev. Lett., 1991,67:2295-2298.
  • 9Campbell M, et al. Fabrication of Phtonic Crystals for the Visible Spectrum by Holographic Lithography[J]. Nature, 2000,404: 53-56.
  • 10Aastuen D J W, Clark N A, Cotter L K , Ackerson B J. Nucleation and Growth of Colloidal Crystals[J].Phys. Rev. Lett., 1986,57: 1733-1736.

二级参考文献48

  • 1廖先炳.光子晶体技术——(二)光子晶体光波导[J].半导体光电,2003,24(3):212-216. 被引量:5
  • 2[1]Yablonovitch E. Inhibited spontaneous emission in solidstate physics and electronics [J]. Phys Rev Lett, 1987, 58: 2059-2061.
  • 3[2]John S. Strong localization of photons in lertain disordered dielectric superlattices [J]. Phys Rev Lett, 1987, 58: 2486-2488.
  • 4[3]Sozuer H, Haus J, Inguva R. Photonic bands: convergence problems with the plane-wave method [J]. Phys Rev B, 1992, 45: 13962-13965.
  • 5[4]Cheng C, Scherer A. Fabrication of photonic band-gap crystals [J]. J Vac Sci Technol, 1995, 13: 2696-2698.
  • 6[5]Campbell M, Sharp D N, Harrison M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography [J]. Nature, 2000, 404: 53-56.
  • 7[6]Shoji S, Kawata S. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin [J]. Appl Phys Lett, 2000, 76: 2668-2671.
  • 8[7]Soshu K, Yoshinari M, Katsuhiro T, et al. Fabrication of electromagnetic crystals with a complete diamond structure by stereolithography [J]. Solid State Commun, 2002, 121: 435-439.
  • 9[8]Cuisin C, Chelnokov A, Rowson S, et al. Submicrometer resolution Yablonovite templates fabricated by x-ray lithography [J]. Appl Phys Lett, 2000, 77: 770-772.
  • 10[9]Toader O, John S. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals [J]. Science, 2001, 292: 1133-1135.

共引文献23

同被引文献132

引证文献13

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部