摘要
引入了求解非线性微分方程的Taylor变换法,建立了识别结构系统动力学边界条件参数(包括边界质量,刚 度和阻尼)的方程。该方法可以利用任意外载激励下的响应识别系统的边界参数,而不需进行模态试验。文中,对 该方法的理论进行了推导,并给出了算例分析和实验,表明该方法有效可行,具有一定的工程应用价值。
Taylor transform method is introduced to solve nonlinear differential equation. With this method, the original dynamic analysis model of a structure is transformed to a set of algebraic equations in a discrete domain. Then, a new method is established to determine the boundary condition parameters of the structure, which can be solved from the linear equations. In this approach, the boundary condition parameters can be identified with response under the external applied excitation, while modal experiment is not needed. It means that only with the response data, the boundary condition parameters can be successfully identified. The comparison between the numerical solution and experimental test data shows the effectiveness and practical value of the proposed method.
出处
《机械科学与技术》
CSCD
北大核心
2005年第2期155-158,共4页
Mechanical Science and Technology for Aerospace Engineering
基金
航空基础科学基金项目(02B53007)
高等学校博士点基金项目(20030699039)资助