期刊文献+

基于神经网络免疫集成的非线性时间序列故障预报 被引量:2

Neural network immune ensemble based fault prediction for nonlinear time series
下载PDF
导出
摘要 针对神经网络集成对个体差异性的要求 ,提出了集成网络间的结构差异度的概念 .在此基础上设计了一种基于反向选择的免疫算法 ,该算法可以在减小集成网络各自训练误差的同时保持网络间的结构差异度 ,从而提高神经网络集成的泛化能力 .同时证明了该算法对最优个体的收敛性 .将该方法应用于受噪声污染的非线性时间序列故障预报 ,根据预测误差可以方便准确地检测系统的缓变故障和突变故障 ,实现对微小故障的快速故障预报 ,降低误检率 .仿真结果证明了该方法的有效性 . A concept named structure difference among neural networks in ensemble is propos ed, which is directed towards the request of individual discrepancy. Based on th is concept, a negative selection based immune algorithm is designed and the convergence of the proposed algorithm is proved. The algorithm can keep the structure difference d egree among networks while the training error of the network is reduced. Thus t he generalization performance of neural network ensemble is improved. By this me thod, the abrupt fault and incipient fault of system can be detected quickly and conveniently. And the tiny unknown fault in the nonlinear time series with nois e can be predicted conveniently and accurately based on the prediction error. Th e error rate of prediction is also reduced. Simulation results show the effectiv eness and feasibility of the method.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第B11期15-19,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金重点资助项目 (60 2 3 40 10 ) 国防基础科研资助项目 (K160 3 0 60 3 18) 航空科学基金资助项目 (0 2E5 2 0 2 5 ) .
关键词 非线性 时间序列 神经网络集成 免疫 故障预报 nonlinear time series neural network ensemble immune fault prediction
  • 相关文献

参考文献1

二级参考文献2

共引文献244

同被引文献95

引证文献2

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部