期刊文献+

基于关系代数的遗传算法模型及其应用 被引量:4

Relation algebra based genetic algorithm model and its applications
下载PDF
导出
摘要 运用选择、投影、广义笛卡尔积等关系代数运算 ,给出了遗传算法的搜索空间及个体、遗传算子和搜索最优解过程等关系代数形式的描述 ,建立了遗传算法的关系代数模型 ,给出了遗传算法的数学解释 .然后 ,给出建立遗传算法关系代数模型的意义 ,说明了数据挖掘和知识发现应用于遗传算法的可行性 .最后 ,用该模型描述了 2个常见用遗传算法解决的问题 ,即TSP问题和交互式遗传算法中的服装设计问题 ,结果表明该模型的可行性 . The search spa ce, individuals, genetic operators and the process of searching optima in geneti c algorithm are formally described by relation algebra operators such as selecti on, projection, and generalized Cartesian product. The relation algebra based ge neti c algorithm model is established, which serves as the explanation of genetic alg o rithm. Then the significance is presented which provides the feasibility of appl ication of data-mining and knowledge-discovering to genetic algorithm. At last , the model is applied to the description of two problems solved by genetic algo rithm, i.e., travelling salesman problem (TSP) and fashion design problem in int eractive genetic algorithm (IGA). The result indicates its feasibility.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第B11期58-62,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目 (60 3 0 40 16) .
关键词 遗传算法 关系代数 基因意义单元 编码 genetic algorithm relation algebra genetic sense unit encoding
  • 相关文献

参考文献2

二级参考文献10

  • 1Takagi H. Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evaluation. Proc of the IEEE, 2001, 89(9): 1275- 1296.
  • 2Takagi H, Ohya K, Ohsaki M. Improvement of Input Interface for Interactive Genetic Algorithms and Its Evaluation. In: Proc of the 12th Symposium on Fuzzy System.. Tokyo, Japan, 1996, 513 -516.
  • 3Venturini G, Slimane M, Morin F. On Using Interactive Genetic Algorithms for Knowledge Discovery in Databases. In: Pmc of the 7th International Conference on Genetic Algorithms. London, UK,1997, 696 - 703.
  • 4Fang C, Chen J. A Study on Multi Criteria Decision Marking Mode: Interactive Genetic Algorithms Approach. In: Proc of the IEEE Conference on Systems, Man, and Cybernetics. Tokyo,Japan, 1999, 356- 362.
  • 5Oksaki M, Takagi H, Ohya K. An Input Method Using DiscreteFitness Values for Interactive GA. Intelligent and Fuzzy Systems,1998, 6:131 - 145.
  • 6Lee J Y, Cho S B. Sparse Fitness Evaluation for Reducing User Burden in Interactive Genetic Algorithm. In: Proc of the 8th linernational Conference on Fuzzy Systems. Seoul, South Korea, 1999,Ⅱ,998- 1003.
  • 7Ingu T, Takagi H, Ohsaki M. Improvement of Interface for Interactive Genetic Algorithr~s - Proposal for Fast GA Convergence. In:Proc of the 13th Symposium on Fuzzy System. Toyarna, Japan,1997, 859- 862.
  • 8Takagi H, Kishi K. On-Line Knowledge Embedding for an Interactive EC-Based Montage Systca'n. In: Proc of the 3rd International Conference on Knowledge-Based Imelligent Information Engineering Systems. Adelaide, Australia, 1999, 280-283.
  • 9Lim I S. Evolving Facial Expressions. In: Proc of the IEEE International Conference on Evolutionary Computation. Perth, WA,Australia, 1995,Ⅱ: 515-520.
  • 10胡静,李金龙,陈恩红,王煦法.交互式遗传算法中用户评估方法研究[J].小型微型计算机系统,2001,22(5):562-564. 被引量:5

共引文献11

同被引文献38

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部