期刊文献+

推广后继函数法研究第二临界情况下同宿环的稳定性 被引量:1

THE CRITERION FOR DETERMINING THE STABILITYOF A HOMOCLINIC CYCLE FOR THE SECOND CRITICAL CASE AND ITS APPLICATION
原文传递
导出
摘要 本文通过灵活选取参照闭曲线,推广了研究闭轨线的后继函数法.通过计算后继函数,本文首先获得了二重极限环的半稳定性判据.在此基础上,运用推广的后继函数法,获得了第二临界情况下同宿环的内稳定性判据,事实上,推广的后继函数法可对以往的结果和本文的结果用统一的方法给予证明,并可向更高临界情况推广.最后本文证明了二重极限环及第二临界情况下的同宿环在一定条件下分支出极限环的唯二性. In this paper, we first obtained the criterion for determining the stability of a semi-stable multiple limit cycle by computing the successor function. Then by generalizing the criterion, we obtained the criterion for determining the stability of a homoclinic cycle for the second critical case. Appling the criterion we determined the stability of a homoclinic cycle with the second critical case. The method used in this paper can give a unified treatment for the results given in the past. Finally, we study the number of limit cycles by bifurcation from a multiple limit cycle of a homoclinic cycle for the second critical case.
作者 胡锐 冯贝叶
出处 《应用数学学报》 CSCD 北大核心 2005年第1期28-43,共16页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10171099)资助项目.
关键词 同宿环 二重极限 临界 半稳定性 闭轨线 推广 证明 选取 分支 stability homoclinic cycle semi-stable limit cycle the second critical case
  • 相关文献

参考文献16

  • 1Ye Y Q. Theory of Limit Cycle (2nd edition). Shanghai: Shanghai Science and Technology Press,1984 (in Chinese).
  • 2Urabe M. Infinitesimal Defermation of Cycles. J. Sci. Hiroshima Univ. (Series A), 1954, 18:37-53.
  • 3Dulac H. On Limit Cycles. Bull. Soc. Math. France, 1923, 51:45-188.
  • 4Andronov A A, Leontovich E A, Gordon I I, Maier A G. Theory of Bifurcations of Dynamic Systems on a Plane. New York: Wiley, 1973.
  • 5Shui-Nee Chow, Hale J K. Methods of Bifurcation Theory. Berlin: Springer-Verlag, 1982.
  • 6Feng Beiye, Qian Min. The Stability of a Saddle Point Separatrix Loop and a Criterion for Its Bifurcation Limit Cycles. Acta. Math. Sinica, 1985, 28(1): 53-70.
  • 7Bo Dena. The Silnikov Problem, Exponential Expansion, Strong λ-lemma, C1-linearization and Homoclinic Bifurcation. J. Diff. Equs., 1989, 79:189-231.
  • 8Li J B, Feng B Y. Stability, Bifurcations and Chaos. Kunming: Yunnan Science and Technology Press, 1995.
  • 9Ma Zhien, Wang Ernian. The Stability of a Loop Formed the Separatrix of a Saddle Point and the Condition to Produce a Limit Cycle. Chin. Ann. of Math., 1983(1): 105-110.
  • 10Luo Dingjun, Han Maoan, Zhu Deming. The Uniqueness of Limit Cycles Bifurcating from a Singular Closed Orbit (Ⅰ). Acta Math. Sinica, 1992, 35(3): 407-417.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部