期刊文献+

高维格上时滞反应扩散方程的行波解 被引量:1

TRAVELING WAVEFRONTS IN SYSTEMS OF DELAYED REACTION DIFFUSION EQUATIONS ON HIGHER DIMENSIONAL LATTICES
原文传递
导出
摘要 本文利用Schauder不动点定理和上、下解技术,研究了高维格上时滞反应扩散方程组当非线性项满足拟单调条件、指数拟单调条件、部分拟单调条件以及部分指数拟单调条件时行波解的存在性. The existence of traveling wavefronts in systems of spatially discrete reaction diffusion equations with delay on higher dimensional lattices is established by Schauder fixed point theorem and upper-lower solutions technique. The cases of quasimonotonicity nonlinear terms, weaken exponential quasimonotonicity one, partial quasimonotonicity one and partial weaken exponential quasimonotonicity one are considered.
出处 《应用数学学报》 CSCD 北大核心 2005年第1期100-113,共14页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10371034)资助项目.
关键词 单调 行波解 反应扩散方程组 SCHAUDER不动点定理 解的存在性 下解 时滞 高维 traveling wavefront Schauder fixed point theorem upper-lower solution quasimonotonicity
  • 相关文献

参考文献11

  • 1Chow S, Mallet-Paret J, Shen W. Traveling Waves in Lattice Dynamical Systems. J. Differential Equations, 1998, 149:248-291.
  • 2Mallet-Paret J. Spatial Patterns, Spatial Chaos, and Traveling Waves in Lattice Differential Equations.In: Stochastic and Spatial Structures of Dynamical Systems (van Strien S. and Verduyn Lunel S. eds.).Amsterdam: North-Holland, 1996, 105-129.
  • 3Malet-Paret J. The Global Structure of Traveling Waves in Spatially Discrete Dynamical Systems. J.Dynam. Differential Equations, 1999, 11:49-127.
  • 4Wu J, Zou X. Asymptotic and Periodic Boundary Value Problems of Mixed FDEs and Wave Solutions of Lattice Functional Differential Equations. J. Differential Equations, 1997, 135:315-357.
  • 5Huang J, Lu G, Zou X. Existence of Traveling Wavefronts for Delayed Lattice Differential Equations.J. Math. Anal. Appl., 2004, 298:538-558.
  • 6Huang J, Lu G, Ruan S. Traveling Wave Solutions in Delayed Lattice Differential Equations with Partial Monotonicity. Nonlinear Analisis: Series A Theory and Methods, 2004, in press.
  • 7Zou X. Traveling Wave Fronts in Spatially Discrete Reaction-diffusion Equations on Higher-dimensional Lattices. In: Proceedings of the Third Mississippi State Conference on Differential Equations and Computational Simulations (electronic). Electron. J. Differ. Eqn. Conf. 1, 1998, 211-221.
  • 8Cahn J, Mallet-Paret J, Van Vleck E. Traveling Wave Solutions for Systems of ODE's on a Twodimentional Spatial Lattice. SIAM J. Appl. Math., 1998, 59:455-493.
  • 9Ma S, Liao X, Wu J. Traveling Wave Solution for Planar Lattice Differential Systems with Applications to Neural Networks. J. Diff. Eqns., 2002, 182:269-297.
  • 10Anderson A, Sleemann B. Wave Front Propagation and its Failture in Coupled Systems of Discrete Bistable Cells Modelled by Fitzhugh-Nagumo dynamics. Inter. J. Bifurcation and Chaos, 1995, 5:63-74.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部