摘要
在半序的支集与赋值的核未必相等的一般情形下,研究了交换环上半序的结构,是文献[1]的继续。通过引入模上半序这一概念,建立了一些结果,这些结果揭示了交换环中与给定赋值相容的半序(和序)的结构。作为推论,一个形式更一般的Baer-Krull定理被推广到交换环上。
This paper is a continuation of reference[1].The purpose of this paper is to investigate the structure of semiorderings (and orderings) of a ring in the general case when the supports of the considered semiorderings need not be coincident with the core of their compatible valuation.By introducing the concept of semiorderings on a module,some results on the structure of semiorderings(and orderings) compatible with a given valuation are obtained.As an important consequence,a general version of Baer-Krull theorem is established in the category of commutative rings.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2004年第4期311-315,共5页
Journal of Nanchang University(Natural Science)
基金
国家重点基础研究发展规划(973)项目(G1998030600)
国家自然科学基金资助项目(19661002)
关键词
环的半序
半序空间
半截口
模的关序
semiorderings of a commutative ring
the space of semiorderings
semisection
semiorderings of a module