期刊文献+

能量法求解全柔性微动机器人移动副的刚度 被引量:6

Establishing stiffness of prismatic pair in fully compliant parallel micro-robot using energy method
下载PDF
导出
摘要 全柔性机构中柔性移动副(P副)刚度的求解是进行全柔性并联机构、全柔性并联微动机器 人分析的基础工作之一.在柔性铰链力学模型的基础上,利用能量法得出了非对称3-RRRP(4R)全 柔性并联机构的变截面柔性移动副(4R)单元上所受外力与端部变形之间的关系,结合柔性铰链的 柔性刚度矩阵求得柔性移动副单元刚度表达式方程.并用ANSYS工程软件建立相同的柔性移动副 模型进行模拟,模拟结果表明,推导的柔性移动副的刚度与模拟结果很相近,刚度的理论方程具有 一定的准确性. Fully compliant parallel mechanism and fully compliant robot based on establishing the stiffness of the compliant prismatic pair are studied. The fully compliant anisomerous mechanism 3-RRRP (4R) is presented as an example in introducing the construction with compliant prismatic pairs and flexible joins. The mechanical model of the compliant prismatic pair is built. The relations between the external force and deformation of the compliant prismatic pair are obtained using the energy method. The stiffness equation of compliant prismatic pair is established based on the expressions of stiffness matrix of flexible joint using energy method. The results are simulated using ANSYS software. The simulation shows that the calculated values are similar to the simulated ones.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2005年第1期12-15,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(50375067)
关键词 全柔性机构 微动机器人 柔性移动副 刚度矩阵 仿真模拟 Computer simulation Deformation Flexible structures Stiffness matrix
  • 相关文献

参考文献10

  • 1于靖军,宗光华,毕树生.全柔性机构与MEMS[J].光学精密工程,2001,9(1):1-5. 被引量:78
  • 2于靖军,毕树生,宗光华,赵东.基于伪刚体模型法的全柔性机构位置分析[J].机械工程学报,2002,38(2):75-78. 被引量:57
  • 3赵玮.面向生物工程的微操作机器人系统的控制[D].北京:北京航空航天大学,2001..
  • 4杨启志,马履中,尹小琴.全柔性机构中柔性运动副的结构型式与应用[J].江苏大学学报(自然科学版),2003,24(4):9-12. 被引量:16
  • 5尹小琴,马履中,杨启志,陈瑞芳.3-RRC全柔性机构中柔性铰链刚度矩阵建立[J].江苏大学学报(自然科学版),2003,24(4):6-8. 被引量:5
  • 6SPEICH John,,GOLDFARB Michael.A compliant—mechanism-based three degree-of-freedom manipulator for small—scale manipulation[J].Robotica,2000,18:95-104.
  • 7GOLDFARB M, SPEICH J E. A well-behaved revolute flexure joint for compliant mechanism design [J]. Transactions of the ASME, 1999, 121 (9) : 424-429.
  • 8KOTA Sridhar,HETRICK Joel,LI Zhe,SAGGERE Laxminarayana.Tailoring unconventional actuators using compliant transmissions:design methods and applications[J].IEEE/Asme Transactions On Mechanics,1999,4(4):396—408.
  • 9KOTA Sridhar, JOO Jinyong, LI Zhe, RODERS Steven M, SNIEGOWSKI Jeef. Design of compliant mechanisms: applications to MEMS [J]. Analog Integrated Circuits and Signal Processing, 2001, 29:7-15.
  • 10HOWELL L L,MIDRA A,NORTON T W.Evalution ofequivalent spring stiffness for use in a pseudo--rigid-body model of large—deflection compliant mechanisms[J].Transactions of the ASME,1996,118(3):126—131.

二级参考文献16

  • 1余波,姚进,薛江.柔性机构简介[J].机械,2000,27(z1):30-32. 被引量:6
  • 2[1]Her I.Methodology for compliant mechanism design:[Ph.D.Dissertation].Michigan:Purdue University,1986
  • 3[2]Howell L L,Midha A.A method for the design of compliant mechanisms with small-length flexural pivots.ASME J.of Mechanical Design,1994,116:280~290
  • 4[3]Paros J,Weisbord L.How to design flexure hinges.Machine Design,1965,37(27):151~156
  • 5[4]Ragulskis K,Arutunian M,Kochikian A,et al.A study of fillet type flexure hinges and their optimal design.Vibration Engineering,1989(22):447~452
  • 6[5]Howell L L,Midha A.A Generalized loop-closure theory for the analysis and synthesis of compliant mechanisms.Machine Elements and Machine Dynamics,ASME,1994,71:491~500
  • 7[6]Frecker M I,Ananthasuresh G K,Nishiwaki N,et al.Topological synthesis of compliant mechanisms using multi-criteria optimization.ASME J.of Mechanical Design,1997,119:238~24
  • 8刘鸿义.材料力学[M].北京:高等教育出版社,1992..
  • 9李勇,郭旻,周兆英.特种微型机械加工技术[J].光学精密工程,2000,8(3):287-291. 被引量:10
  • 10于靖军,宗光华,毕树生.全柔性机构与MEMS[J].光学精密工程,2001,9(1):1-5. 被引量:78

共引文献141

同被引文献40

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部