期刊文献+

充分非线性KdV—Burgers方程的全局边界稳定性 被引量:1

Global boundary stabilization of sufficiently nonlinear Korteweg-de Vries-Burgers equation
下载PDF
导出
摘要 讨论了定义于闭区间[0,1]上的充分非线性KdV-Burgers方程在给定边界反馈条件下的稳 定性问题,应用Banach不动点定理和算子半群理论证明了充分非线性KdV-Burgers方程在给定 边界反馈条件下解是存在唯一的;并应用一些不等式和分部积分理论证明了该方程的解在L2意义 下是全局指数稳定的,在H3意义下是全局渐近稳定的,以及在H3意义下是半全局指数稳定的,从 而为该方程的实际应用奠定了理论基础. Problem of stabilization by boundary feedback conditions for the sufficiently nonlinear Korte-weg-de Vries-Burgers equation on domain [ 0,1 ] is studied. The Banach contraction fixed point theorem and semi group theory are used to prove the uniqueness and existence of the solution of the sufficiently nonlinear Korteweg-de Vries-Burgers equation by boundary feedback conditions. Some usual inequali-ties and integration by parts are used to show that the equation is in L -global exponential stability, H3 -global asymptotic stability, and H3-semi global exponential stability, and is feasible for practical applications.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2005年第1期45-48,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10071033)江苏大学青年基金资助项目(jdq03024)
关键词 充分非线性KdV-Burgers方程 边界控制 全局稳定性 sufficiently nonlinear Korteweg-de Vries-Burgers equation boundary control global stabilization
  • 相关文献

参考文献7

  • 1田立新,邓晓燕.MKdV-Burgers方程的Neumann边界控制[J].江苏大学学报(自然科学版),2003,24(1):23-25. 被引量:7
  • 2王景峰,田立新,赵志峰.K-S方程边界控制的全局指数稳定估计[J].江苏大学学报(自然科学版),2003,24(3):24-27. 被引量:5
  • 3BONA J L,DOUGAUS V A,KARAKASHIAN O A,MCKINNEY W R.Computations of blow—up and decay for periodic solutions of the generalized Korteweg—de Vries—Burgers equation.[J].Appl Numer Math,1992,10(3—4):335—355.
  • 4ZHANG B Y.Bundary stabilization of the Korteweg—de Vries equation[J].Ser Numer Math,1994,118:371—389.
  • 5ROSIER L.Exact boundary controllability for the Kone—weg—de Vries equation on a bounded domain[J].ESAIM Control Option Calc,1997,2:33—55(electronic).
  • 6AMICK C J,BONA J L,SCHONBEK M E.Decay of solutions of some nonlinear wave equations[J].Journal of Differential Equations,1989,81:1—49.
  • 7NAUMKIN P I,SHISHMAREV I A.A problem on the decay of step—like data for the Korteweg—de Vries—Bur—gers—equation(Russian)[J].Funktsional Anal Prilozhen,1991,25(1):2l一32;translation in Functional Anal Appl,1991,25(1):16—25.

二级参考文献6

  • 1Balogh A. Krstic M. Regularity of Solutions of Burgers' Equation with Globally Stabilizing Nonlinear Boundary Feedback[ J ]. Submitted to SlAM J Control Optim,1998(3) :12 - 15.
  • 2Kretic M. On Globel Stabilization of Burgers' Equation by Boundary Control[ J ]. Systems and Control Letters,1999(3) : 123 - 141.
  • 3Khail H K. Nonlinear Systems[ M]. New Jersey :Prentice-Hall, 1996.
  • 4Adams R. Sobolev Space[ M]. New York: Acaemic Press, 1977.
  • 5Pazy A. Semigroup of Linear Operators and Applications to Partical Differential Equations[ M ]. New York : Springer-Verlag, 1983.
  • 6许伯强,田立新.周期小波基下Burgers方程数值模拟[J].江苏理工大学学报(自然科学版),2001,22(3):1-6. 被引量:4

共引文献8

同被引文献6

  • 1Nicllaenko B, Scheurer B, Temam R. Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors [ J ]. Phys D,1985,16:155 - 183.
  • 2Kuramoto Y, Tsuzuki T. On the formation of dissipation structure in reaction-diffusion system [ J ]. Prog-Phys,1975,54:687 - 699.
  • 3Sivashinsky G. Nonlinear analysis of hydrodynamic instability in laminar flames- Π numerical experiment [ J ].Acta Astronaut, 1977 (4) : 1117 - 1266.
  • 4Adams R. Sobolev Spaces [ M ]. New York: Academic Press, 1975. 309 - 312.
  • 5Liu Wei-jiu, Miroslav Krstic. Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation[ J ]. Nonlinear Analysis, 2001,43:485 - 507.
  • 6王景峰,田立新,赵志峰.K-S方程边界控制的全局指数稳定估计[J].江苏大学学报(自然科学版),2003,24(3):24-27. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部