期刊文献+

关于Sylow交的共轭类(英文)

On Sylow Intersection Conjugacy Classes
下载PDF
导出
摘要 设G为有限群 ,p是G阶数的一个素因子 ,即p| |G|。在有限群的研究中 ,Sylowp 子群无疑起到了非常重要的作用 ;同样 ,Sylowp 子群交在有限群不可分解模和块论研究当中的作用也是不容忽视的。文中研究了有限群G的Sylowp 子群交的共轭类个数np(G)对于有限群结构的影响 ,并且着重讨论了np(G) =2的有限群的性质 ,特别地 ,给出了有限群G满足np(G) =2时 2个不同Sylowp 子群的交与Op(G)相等的几个充分必要条件。 Suppose that G is a finite group and p is a prime such that p||G|. This paper studies the group invariant np(G), the number of G-orbits of Sylow intersections, which plays an important role in the research of block theory and indecomposable modules of finite groups. The paper shows some properties for finite groups with np(G) = 2, in particular, it gives some necessary and sufficient conditions which show when a finite group G with np(G) =2 has the unique maximal normal p-subgroup as an intersection of two distinct Sylow p-subgroups.
作者 王宝山
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第1期21-26,共6页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金 (10 4 0 10 34)资助项目
关键词 Sylow交 极大正规p-子群 sylow intersection block maximal normal p-subgroup
  • 相关文献

参考文献10

  • 1Robinson G. Local Structure, Vertices and Alperin's Conjecture. Proc London Math Soc, 1996, 72(3):312-330.
  • 2Robinson G. On Sylow Intersections in Finite Groups. Proc Amer Math Soc, 1984, 90:21-24.
  • 3Brodkey J S. A Note on Finite Groups with an Abelian Sylow Subgroup.Proc Amer Math Soc, 1983, 14:132-133.
  • 4Zenkov V I,Mazurov V D. On the Intersection of Sylow Subgroups in Finite Groups. Algebra and Logic,1996, 35:236-240.
  • 5Michler G. Modular Representation Theory and the Classification of Finite Simple Groups. Proc Sympos Pure Math, 1987, 47:223-232.
  • 6Gorenstein D. Finite Simple Groups. New York: Plenum, 1982.
  • 7Gorenstein D. Finite Groups. New York/Evanston/London: Harper & Row, 1968.
  • 8Hirosi Nagao,Yukio Tsushima, Representation of Finite Group. Boston San Diego New York/Berkeley London Sydney/Tokyo Toronto: ACADEMIC PRESS INC, 1986.
  • 9Zhang Jiping. Studies on Defect Groups. J Algebra,1994, 166:310-316.
  • 10Shi S M. Some Results on Defect Groups. J Algebra, 1991, 142:233-238.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部