期刊文献+

非线性控制系统的一般形式及其稳定性(英文) 被引量:1

General Normal Form and Stabilization of Nonlinear Systems
下载PDF
导出
摘要 给出了SISO非线控制系统的点相对阶的概念,以此得出一般Brrnes Isidori标准形式。并对于具有最小相位非线性系统,给出了渐近稳定的充分条件;对于具有非最小相位系统,通过设计控制器来构建中心流形的方法。 A generalized normal form of SISO nonlinear comtrol systems,called the generalized Byrnes-Isidori canonical form,is obtained by proposing a generalized relative degree,namely,the point relative degree.For the systems with minimum phase,a sufficient condition is provided to assure the stabilizability.For the system with non-minimum phase zero dynamics,the center manifold approach is applied.It is shown that the stabilization technique via designed center manifold,is still applicable to this kind of general nonlinear control systems.
出处 《中国科学院研究生院学报》 CAS CSCD 2003年第2期212-222,共11页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 supportedpartlybyG19980 2 0 30 8ofChina
关键词 稳定性 相对阶 Byrnes-Isidori标准形式 零动态 中心流形 stabilization,relative degree,Byrnes-Isidori normal form,zero dynamics,center manifold
  • 相关文献

参考文献11

  • 1D Aeyels.Stabilization of a classof non-linear systems by a smooth feedback control.Sys Contr Lett,1985,5:289~294
  • 2S Behtash ,D Dsatry.Stabilization of non-linear systems with uncomtrollablelinearization.IEEE Trans Aut Contr,1988,33(6):585~590
  • 3W M Boothby.An Introduction to Differential Manifolds and Reimannian Geometry.2nded.Academic Press Inc,1986
  • 4C I Byrnes,A Isidori,J C Willems.Passivity,feedback equivalence and the golbalstabilization of minimum phase nonlinear systems.IEEE Trans Aut Contr,1991,36(11):1228~1240
  • 5D Cheng.Stabilization of a class of nonlinear non-minimum phase systems.Asian JControl,2000,2(2):132~139
  • 6D Cheng,C Martin.Stabilization of nonlinear systmes via designed centermanifold,IEEE Trans Aut Contr,2001,46(9):1372~1383
  • 7J Carr.Applications of Center Manifold Theory.Springer-Verlag,1981
  • 8M Golubitsky,V Guillemin.Stable Mappings and TheirSingularities.Springer-Verlag,1973
  • 9A Isidori. Nonlinear Control Systems.3rd Ed.Springer,1995
  • 10R Marino.On the largest feedback linearizable subsustem.Sys Contr Lett,1986,7:345~351

同被引文献12

  • 1董亚丽,齐玉峰.一类非线性系统的局部镇定[J].系统科学与数学,2007,27(2):265-272. 被引量:1
  • 2Cheng D, Xi Z, Feng G. Stabilization of general nonlinear control systems via center manifold and approximation techniques [J]. Journal of Dynamical and Control Systems, 2004, 10 (3) :315 -327.
  • 3Cheng D. Stabilization of a class of nonlinear non-minimum phase systems[J]. Asian Journal of Control, 2000, 2(2) : 132 - 139.
  • 4Liaw Der Cherng. Application of center manifold reduction to nonlinear system stabilization [J]. Applied Mathematics and Computation, 1998,91(2 - 3) : 243 - 258.
  • 5Cheng D, Tarn T J, Spurgeon S K. On the design of output regulators for nonlinear systems[J]. Systems and Control Letters, 2001,43(3) : 167 - 179.
  • 6Dong Y, Cheng D, Qin H. Feedback stabilization via designed planar center manifold[J]. International Journal of Roubust and Nonlinear Control, 2004,14 (1) : 1 - 14.
  • 7Aeyeis D. Stabilization of a class of nonlinear systems by a smooth feedback control [J]. Systems and Control Letter, 1985, 24(5): 289-294.
  • 8Marino R. Feedback of single-input nonlinear systems[J]. Systems and Control Letters, 1988, 27 (10) : 201 - 206.
  • 9Khalil H K. Nonlinear Systems [M]. 3rd ed. Prentice Hall, 2002.
  • 10刘向东,黄文虎.非线性临界系统稳定性分析的中心流形方法[J].哈尔滨工业大学学报,1999,31(6):1-4. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部