期刊文献+

虚拟噪声通道在基于ICA消噪过程中的应用 被引量:11

Application of Virtual Noise Channels in the Processing of Signal De-noising with ICA
下载PDF
导出
摘要 考虑应用独立分量分析方法进行信号的消噪处理时,要求观测通道的个数大于或等于独立信源的个数的条件,以及实际应用中的噪声源的随机性,尝试引入虚拟噪声通道的概念,克服难以确定噪声源的个数,因而很难满足独立分量分析方法应用要求的限制,根据具体的检测条件和被测对象的特性,引入相应的虚拟通道数,从而提高独立分量分析方法在消噪方面的应用性能。实验表明,利用该方法可以得到很好的消噪结果,有效提高信号的信噪比。 In the application of Independent Component Analysis (ICA), it is usually needed that the number of observed channels should be lager than or equal to the number of independent signal sources. However, because of the randomicity of noise source, the number of noise is often uncertain in practical applications. To improve the application performance in signal de-noising of ICA, the concept of virtual noise channel was introduced and the needed virtual channels were imported based on the concrete detected conditions and the characteristics of detected objects. The experiments indicate that good de-noised results can be obtained and the signal-noise ratio can be improved effectively with the method.
机构地区 重庆大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2005年第4期350-352,364,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(59875090) 重庆市自然科学基金资助项目(渝科发计字[2004]55号)
关键词 独立分量分析 消噪 信号 通道 信噪比 噪声 信源 虚拟 对象 ICA Independent Component Analysis(ICA) virtual noise channel de-noise signal-noise ratio
  • 相关文献

参考文献7

二级参考文献80

  • 1张贤达 保铮.非平稳信号分析与处理[M].国防工业出版社,1999,7.324-352.
  • 2Qian S Chen D.Discrete Gabor Transform[J].IEEE Transaction on Signal Processing,1993,41(7):2429-2438.
  • 3[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 4[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 5[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 6[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 7[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 8[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 9[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 10[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.

共引文献316

同被引文献91

引证文献11

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部