期刊文献+

Drifting model approach to modeling based on weighted support vector machines 被引量:1

下载PDF
导出
摘要 This paper proposes a novel drifting modeling (DM) method. Briefly, we first employ an improved SVMs algorithm named weighted support vector machines (W.SVMs), which is suitable for locally learning, and then the DM method using the algorithm is proposed. By applying the proposed modeling method to Fluidized Catalytic Cracking Unit (FCCU), the simulation results show that the property of this proposed approach is superior to global modeling method based on standard SVMs.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第4期610-614,共5页 系统工程与电子技术(英文版)
  • 相关文献

参考文献9

  • 1[1]Ning Li, Shaoyuan Li, Yugeng Xi. A multiple model approach to modeling based on LPF algorithm. Journal of Systems Engineering and Electronics, 2001, 12(3): 64~70.
  • 2[2]Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on SMC, 1985, 15: 116~132.
  • 3[3]Cleveland W S, Delvin S J. Locally weighted regression:an approach to regression analysis by local fitting. Journal of the American Statistical Association, 1988, 83 (403):596~ 610.
  • 4[4]Vapnik V. Estimation of dependences based on empirical data. Springer Verlag, New York, 1982.
  • 5[5]Vapnik V. The nature of statistical learning theory.Springer Verlag, New York, 1995.
  • 6[6]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In Proc. of the IEEE Workshop on Neural Networks for Signal Processing Ⅶ,New York, 1997. 276~285.
  • 7[7]Smola A. Regression estimation with support vector learning machines. Technische Universital Nunchen, 1996.
  • 8[8]Atkeson C G, Moore A W, Schaal S. Locally weighted learning. AI Review, 1996, 11: 11~73.
  • 9[9]Wang Yongsheng. Studies on soft sensor theories, methods, software package, and industrial applications. Ph. D.Thesis of Shanghai Jiaotong University, 2000.

同被引文献5

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部