期刊文献+

基于Markov随机场的三维物体识别算法 被引量:1

Recognition of multiple 3-D objects based on Markov random field models
原文传递
导出
摘要 为准确识别出三维物体,提出了一种新的物体特征框架,采用密集采样的多分辨率网格来描述物体观测图像的局部特征,引入Markov随机场模型对网格节点之间的几何关系进行建模。不同图像之间的匹配通过最高置信度优先算法实现,以获取两图像各个节点之间的准确匹配关系以及全局相似度。在Coil-100(columbiaobjectimagelibrary)图像数据库上,以100个物体的4、8、18、36个视角的样本为模板,用其他68、64、54和36个视角的样本进行测试,该算法识别率分别为95.75%、99.30%、100.0%和100.0%,识别准确率明显高于文献中的方法,这说明算法在基于观测图像的物体识别领域有着非常好的应用前景。 Computer vision systems can not easily identify 3-D objects. This paper presents an object framework which utilizes densely sampled grids with different resolutions to represent the local information of the input image. A Markov random field model is used to model the geometric distribution of the key object nodes. Flexible matching, which seeks to find an accurate correspondence map between the key points of two images, combines the local similarities and the geometric relations using the highest confidence first method. Then, a global similarity value is calculated for the object recognition. The algorithm was evaluated using the Coil-100 object database, which consists of 7 200 images of 100 objects. When the numbers of templates for each object were varied from 4, 8, 18 to 36, the object recognition rates were 95.75%, 99.30%, 100.0% and 100.0%, which are much higher than those of previous algorithms. This excellent recognition performance indicates that the approach is well-suited for appearance-based object recognition.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第1期28-32,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60241005)
关键词 模式识别 三维物体识别 MARKOV随机场 最高置信度优先算法 pattern recognition 3D object recognition Markov random field highest confidence first
  • 相关文献

参考文献7

  • 1Swain M J, Ballard D H. Color inexing [J]. International Journal of Computer Vision, 1991, 7(10) : 11 - 32.
  • 2Pontil M, Verri A. Support vector machines for 3D object recognition [J], IEEE Trans Pattern Analysis and Machine Intelligence, 1998, 20(6) : 637 - 646.
  • 3Yang M H, Roth D, Ahuja N, Learning to Recognize 3D Objects with SNoW [A]. European Conf on Computer Vision [C]. Dublin, Springer Link, 2000. 439- 454.
  • 4Murase, Hiroshi, Nayar S K. Visual learning and recognition of 3-D obiects from appearance [J]. International Journal of Computer Vision, 1995, 14(1): 5-24.
  • 5Lowe D G.Object recognition from local scale-invariant features [A]. International Conf on Computer Vision [C].Corfu, Greece: IEEE Computer Society, 1999. 1150- 1157.
  • 6Schmid C, Mohr R.Combining greyvalue invariants with local constraints for object recognition [A]. Computer Vision and Pattern Recognition [C]. San Francisco, USA: IEEE Computer Society, 1996. 872 - 877.
  • 7Chou P B, Brown C M. The theory and practice of Bayesian image labelling [J]. International Journal of Computer Vision, 1990, 4(3) : 185 - 210.

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部