期刊文献+

神经网络的空间分解方法求解热传导方程 被引量:1

Space compartment method for solving steady-state heat transfer problem with neural networks
原文传递
导出
摘要 在微机电系统(MEMS)等众多领域的模拟中,都需要求解偏微分方程。常用的方法得到的都是数值形式的解。该文提出了一种利用人工神经网络得到偏微分方程的解析形式解的方法。把神经网络的工作区域划分为小的区域,用不同的神经网络逼近,计算精度提高了一倍,计算时间减少到十分之一以下。用它求解了二维空间上的静态热传导问题,得到了精确的解析形式的解。因为这种解可以方便地用于VHDL-AMS(VHSIChardwaredescriptionlanguage-analogandmixed-signal)模型,所以它可以用于各个领域的偏微分方程的模拟。 Micro-Electro-Mechanical System (MEMS) simulations and, more generally, multi-domain system simulations need to solve partial derivative equations (PDE). This paper describes a method to approximate the analytical solution of the PDE using artificial neural networks (ANN). The operating area is compartmentalized into several areas with different neural networks used to approximate the solution in each area. The accuracy is much better and the training time is reduced to less than 1/10 of the method without space compartment. A very precise solution was obtained for the steady-state heat transfer equation as an example. Since this solution can be easily included in VHDL-AMS (VHSIC hardware description language-analog and mixed-signal) models, the method is an effective way to introduce PDE solutions into multi-domain simulators.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第1期130-132,共3页 Journal of Tsinghua University(Science and Technology)
关键词 人工神经网络 偏微分方程 热传导 artificial neural networks partial derivative equations heat transfer
  • 相关文献

参考文献7

  • 1Lee Hyuk. Neural algorithm for solving differential equations[J]. J Compt Phys, 1990, 91: 110-131.
  • 2Meade A J, Fernandez A A. The numerical solution of linear ordinary differential equations by feedforward neural networks [J]. Math Comput Modelling, 1994, 19(12):1 - 25.
  • 3Meade A J, Fernandez A A. Solution of nonlinear ordinary differential equations by feedforward neural networks [J].Math Comput Modelling, 1994, 20(9) : 19 - 44.
  • 4Lagaris I E, Likas A, Fotiadis D I. Artificial neural network methods in quantum mechanics [J]. Cornput Phys Cornrnun,1997, 104: 1-14.
  • 5LIU Bo-An, Jammes Bruno. Solving ordinary differential equations by neural network [A]. Proceeding of 13# european simulation multi-conference [C]. Warsaw, Poland..Society for Computer Simulation International, 1999.437-441.
  • 6Lagaris I E, Likas A, Fotiadis D I. Artificial neural networks for solving ordinary and partial differential equation[J]. IEEE Trans Neural Net'woks, 1998, 9(5) :987 - 1000.
  • 7ZHOU Xin, LIU Boan, Jammes Bruno. Solving steady-state partial derivative equation with neural network [A]. The 8th international conference on neural information processing[C]. Shanghai, China: Fudan Univ Press, 2001.1069 -1074.

同被引文献4

  • 1Mathews John H 陈渝 周璐 译.数值方法(MATLAB版)[M].北京:电子工业出版社,2002..
  • 2VAN DEN BERG G B J.The phase plane for a class of fourth order differential equations[J].Differential Equations,2000,161:110-153.
  • 3LIU B,JAMMES B.Solving ordinary different equations by neural netmork[A]//Proceeding of 13 European simulation multic confererue[C].Warscuv,Poland:Society for Computer Simulation International,1999.
  • 4蔡章生,张帆,蔡琦.常微分方程数值计算导数权重法[J].海军工程大学学报,2002,14(4):21-23. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部