摘要
对任一2-连通无爪图G,如果存在v_0∈V(G),|N(v_0)|=|V(G)|-1,则对任意两个顶点a,b∈N(v_0),G中存在以a,b为其端点的Hamilton路.并由此证明了2-连通且局部连通的无爪图是Hanilton图.
Given G to be 2-connected claw-free graph. If there exists a vertex v0∈ V(G) , where |N(v0)| = |V(G)|-1 ,then G has a Hamiltonian path with endpoints a and b for each pair of vertice a ,b∈N(v0). It is proven that 2-connected and local connected claw-free graph is Hamiltonian one.
出处
《烟台师范学院学报(自然科学版)》
1993年第1期7-10,共4页
Yantai Teachers University journal(Natural Science Edition)
关键词
无爪图
局部连通
哈密顿图
图论
claw-free graph, Hamiltonian graph, local connected graph, Hamiltonian path,connected adjacency domain