摘要
运用反证法的证明技巧,对任一无爪图G及其圈C,证明了只要C上有一个接触点是强N_2-局部连通的,则C一定不是最长圈.即证明了强N_2-局部连通无爪图是Hamilton图.
It is proved that the cycle C must be not the longest for every claw-free graph G and a cycle in G,if a catchment vertex is strong N2-locally connected vertex ,that is, the strong N2-locally connected claw-free graph is Hamiltonian one.
出处
《烟台师范学院学报(自然科学版)》
1993年第2期5-8,共4页
Yantai Teachers University journal(Natural Science Edition)
关键词
无爪图
局部连通
哈密顿图
图论
claw-free graph, strong N2-locally connected, connected neighbor set,Hamiltonian graph