期刊文献+

η-INVARIANT AND CHERN-SIMONS CURRENT 被引量:2

η-INVARIANT AND CHERN-SIMONS CURRENT
原文传递
导出
摘要 The author presents an alternate proof of the Bismut-Zhang localization formula of η invariants, when the target manifold is a sphere, by using ideas of mod k index theory instead of the difficult analytic localization techniques of Bismut-Lebeau. As a consequence, it is shown that the R/Z part of the analytically defined η invariant of Atiyah-Patodi-Singer for a Dirac operator on an odd dimensional closed spin manifold can be expressed purely geometrically through a stable Chern-Simons current on a higher dimensional sphere. As a preliminary application, the author discusses the relation with the Atiyah-Patodi-Singer R/Z index theorem for unitary flat vector bundles, and proves an R refinement in the case where the Dirac operator is replaced by the Signature operator.
作者 ZHANGWEIPING
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第1期45-56,共12页 数学年刊(B辑英文版)
基金 Project supported by the Cheung-Kong Scholarshipthe Key Laboratory of Pure MathematicsCombinatorics of the Ministry of Education of Chinathe 973 Project of the Ministry of Science and Technology of China.
关键词 Direct image η-Invariant Chern-Simons current mod k index theorem η-不变式 直接象 k指数定理 迪拉克算子 有界黎曼流形
  • 相关文献

参考文献1

二级参考文献19

  • 1[16]Liu, K. & Zhang, W., Adiabatic limits and foliations, Contemp. Math., 279(2001), 195-208.
  • 2[17]Lott, J., R/Z-index theory, Comm. Anal. Geom., 2(1994), 279-311.
  • 3[18]Zhang, W., Sub-signature operators and a local index theorem for them (in Chinese), Chinese Sci.Bull., 41(1996), 294-295.
  • 4[19]Zhang, W., Analytic and topological invariants associated to nowhere zero vector fields, Pacific J.Math., 187(1999), 379-398.
  • 5[1]Atiyah, M. F., Patodi, V. K. & Singer, Ⅰ. M., Spectral asymmetry and Riemannian geometry Ⅰ, Proc.Cambridge Philos. Soc., 77(1975), 43-69.
  • 6[2]Atiyah, M. F., Patodi, V. K. & Singer, Ⅰ. M., Spectral asymmetry and Riemannian geometry Ⅱ, Proc.Cambridge Philos. Soc., 78(1975), 405-432.
  • 7[3]Atiyah, M. F., Patodi, V. K. & Singer, Ⅰ. M., Spectral asymmetry and Riemannian geometry Ⅲ, Proc.Cambridge Philos. Soc., 79(1976), 71-99.
  • 8[4]Atiyah, M. F. & Singer, Ⅰ. M., The index of elliptic operators Ⅴ, Ann. of Math., 93(1971), 139-149.
  • 9[5]Bismut, J. M., The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math., 83(1986), 91-151.
  • 10[6]Bismut, J. M. & Cheeger, J., η-invariants and their adiabatic limits, J. Amer. Math. Soc., 2(1989),33-70.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部