摘要
The author presents an alternate proof of the Bismut-Zhang localization formula of η invariants, when the target manifold is a sphere, by using ideas of mod k index theory instead of the difficult analytic localization techniques of Bismut-Lebeau. As a consequence, it is shown that the R/Z part of the analytically defined η invariant of Atiyah-Patodi-Singer for a Dirac operator on an odd dimensional closed spin manifold can be expressed purely geometrically through a stable Chern-Simons current on a higher dimensional sphere. As a preliminary application, the author discusses the relation with the Atiyah-Patodi-Singer R/Z index theorem for unitary flat vector bundles, and proves an R refinement in the case where the Dirac operator is replaced by the Signature operator.
基金
Project supported by the Cheung-Kong Scholarshipthe Key Laboratory of Pure MathematicsCombinatorics of the Ministry of Education of Chinathe 973 Project of the Ministry of Science and Technology of China.