期刊文献+

THE FUNCTIONAL DIMENSION OF SOME CLASSES OF SPACES

THE FUNCTIONAL DIMENSION OF SOME CLASSES OF SPACES
原文传递
导出
摘要 The functional dimension of countable Hilbert spaces has been discussed by some authors. They showed that every countable Hilbert space with finite functional dimension is nuclear. In this paper the authors do further research on the functional dimension, and obtain the following results: (1) They construct a countable Hilbert space, which is nuclear, but its functional dimension is infinite. (2) The functional dimension of a Banach space is finite if and only if this space is finite dimensional. (3)Let B be a Banach space, B* be its dual, and denote the weak * topology of B* by σ(B*, B). Then the functional dimension of (B*, σ(B*, B)) is 1. By the third result, a class of topological linear spaces with finite functional dimension is presented.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第1期67-74,共8页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No.10071088, No.10171098).
关键词 Functional dimension Countable Hilbert space Topological linear space 可数希尔伯特空间 拓扑线性空间 函数维度 巴拿赫空间 计算公式
  • 相关文献

参考文献4

  • 1Gel'fand, I. M. & Vilenkin, N. Ya., Generalized Functions, Ⅳ, Applications of Harmonic Analysis,Academic Press, New York, 1964.
  • 2Kolmogorov, A. N. & Tikhomirov, V. M., e-Entropy and e-capacity of sets in function spaces, Transl.Amer. Math. Soc., 17(1961), 227-364.
  • 3Liu, S., Generalized functions associated with self-adjoint operators, J. Austral. Math. Soc., Series A,68(2000), 301-311.
  • 4Taylor, A. E., Introduction to Functional Analysis, John Wiley and Sons, Inc., New York, 1963.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部