期刊文献+

氢同位素氘从气相到液相的催化交换实验研究 被引量:13

Experimental Studies on Hydrogen Isotopic Deuterium From Gas to Liquid Phase by Catalytic Exchange
下载PDF
导出
摘要 采用Pt-SDB疏水催化剂与亲水填料按1:4混装进行氘从气相到液相的催化交换实验,研究影响传质单元数及氘转化率的因素.结果表明:为获得较大的传质单元数,需选择合适的操作温度及交换气流速;液体流量增加,转化率提高,但液体流量达到一定程度时,氘转化率几乎不再变化;催化柱长度对氘转化率有较大影响,交换气流速2 m3/h、液体流量1~2 kg/h、45℃时,4 m柱长下的氘转化率达到90%. The experimental studies on hydrogen isotopic deuterium from gas to liquid phase were completed by mixed ratio 1:4 of Pt-SDB hydrophobia catalyst and hydrophillic packing. The influencing factors on number of transfer units (NTU) and transformation efficiencies of deuterium were researched. The results show that preferable NTU can be obtained by choosing suitable operational temperature and flux of exchange gas. The transformation rate increases with increasing liquid flux, but it cannot obviously be improved when liquid flux attains some level. The length of catalytic column has an obvious influence on transformation rate and 90% of transformation rate is obtained by 4 m column length at gas flux with 2 m3/h, liquid flux with 1-2 kg/h and 45°C.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2005年第1期49-52,共4页 Atomic Energy Science and Technology
关键词 疏水催化剂 氢同位素 传质单元数 转化率 操作温度 催化交换工艺 Catalysts Deuterium Isotopes Phase transitions Test facilities
  • 相关文献

参考文献9

  • 1张莉,朱正和,钟正坤,孙颖,朱志艳.计算氢同位素水分子汽化焓的比较法[J].原子与分子物理学报,2003,20(4):536-540. 被引量:2
  • 2Ellis RE, Lentz JE, Rogers ML,et al. Development of Combined Electrolysis Catalytic Exchange : MLM-2952 [R]. USA : MLM, 1982.
  • 3Belapurka AD, Gupta NM, Lyer R_M. PTFE Depersed Hydrophobic Catalysts for Hydrogen-water Isotope Exchange[J]. Appl Catal, 1988,43 : 1-31.
  • 4Andreev BM, Sakharovsky YA, Rozenkevich MB, et al. Installation for Separation -f Hydrogen Isotope by the Method of Chemical Isotope Exchange in the "WaterHydrogen"System[J]. Fusion Technol, 1995,28:515-518.
  • 5Doenitz W, Schmidberger R, Steinheil E. Hydrogen Production by High Temperature Electrolysis of Water Vapor[J]. Int J Hydrogen Energy,1979,55(5):480-486.
  • 6Harrison TE. Design of a Demonstration Tritium Recovery Plant for Chalk River[A]. Proceedings Tritium Technology in Fission Fusion and Isotopic Applieations[C]. Dayton, Ohio, USA: [s. n.],1980. 377-383.
  • 7KeilW, Erdle E. Tritium Enrichment via CECE-process With High Temperature Steam Electrolysis[J]. Fusion Technol, 1988,14(9) : 513- 519.
  • 8Davidson RB, Hatten FV, Schaub M. Commissioning and First Operation Experience at Darlington Tritium Removal Facility [J]. FusionTechnol,1988,11(9):472-479.
  • 9Holtslander WJ, Harrison TE, Gallagher JD. The Chalk River Tritium Extraction Plant Construction and Early Commissioning[J]. Fusion Technol, 1988,14(9) :484-487.

二级参考文献4

  • 1Spagnolo D A, Everatt A E, Seto P W K, et al. Choice of a process design for simultaneous deterititation and upgrading of heavy water for the advanced neutron source[J]. Fusion technology, 1988,14:501-506.
  • 2Miller A I, Spagnolo D A, Derore J R. Enrichment and volume reduction of tritiated water using combined electrolysis catalytic exchange[J]. Fusion technology, 1995,12:204-213.
  • 3Weissbluth M, Atoms and moleculesCM]. Academic Press 1978.
  • 4Alexander van Hook W. Vapor pressures of the isotopic waters and ices[J]. J Phys Chem , 1968,72(4):1 234- 1 244.

共引文献1

同被引文献175

引证文献13

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部