期刊文献+

计算大Thiele模数催化剂有效因子的近似方法 被引量:1

Approximate Method for Determining Efficiency Factors of Catalyst Particle with Large Value Thiele Modulus
下载PDF
导出
摘要 应用带大参数微分方程理论,对具有大Thiele模数多孔催化剂颗粒内的非线性扩散-反应边值问题作了近似处理,提出了计算催化剂有效因子的近似表达式。针对冪函数型和Langmuir-Hinshelwood型动力学方程,用近似表达式计算了片形、圆柱形、球形3种不同形状催化剂颗粒的有效因子。将近似表达式的计算结果与用正交配置法计算的结果比较,二者在较宽的参数范围内十分吻合。通过计算还表明,利用近似表达式计算催化剂颗粒的有效因子,具有使用简便、计算快速的优点。 Approximate treatment of nonlinear diffusion-reaction boundary value problems is concerning porous catalyst particles with large value. Thiele modulus was carried out by applying theory of ordinary differential equation with large parameter. Approximate expression for calculating efficiency factors of porous catalysts was derived. Efficiency factors of three types of catalyst particles were calculated by means of approximate expression with power law type kinetic expressions and Langmuir-Hinshelwood kinetic expressions. Results obtained by approximate expression were compared with those by orthogonal collocation method. Agreement between was satisfactory in quite a wide parameter range. Moreover, the presented method for evaluating efficiency factor was simple, rapid and effective.
出处 《石油化工》 EI CAS CSCD 北大核心 2005年第1期41-45,共5页 Petrochemical Technology
基金 四川省教育厅自然科学科研基金资助项目(2003A113)
关键词 近似表达式 有效因子 近似方法 边值问题 微分方程 模数 大参数 多孔催化剂 正交配置法 颗粒 porous catalyst nonlinear diffusion-reaction boundary value problem efficiency factor approximate expression
  • 相关文献

参考文献8

  • 1林正国 邵念慈 李弈绯.用残差余量法计算球形催化剂的有效因子[J].化工学报,1984,35(1):66-71.
  • 2杨进 李绍芬.多孔催化剂有效因子的近似分析解[J].化工学报,1987,38(1):1-21.
  • 3陈尚伟.计算多孔催化剂有效因子的区域分割法[J].化工学报,1997,48(5):600-607. 被引量:3
  • 4奈弗AH著 宋家驌译.摄动方法导引[M].上海:上海翻译出版公司,1990.421-424.
  • 5Wedel S, Luss D. A Rational Approximation of the Effectiveness Factor. Chem Eng Commun, 1980,7 (4 ~ 5 ) :245 ~ 259.
  • 6Gottifredi J, Gonzo E, Quiroga O. Isothermal Effectiveness Factor I . Analytical Expression for Single Reaction with Arbitrary Kinetics, Slab Geometry. Chem Eng Sci, 1981,36 (4) :705 ~ 711.
  • 7Regalbuto M, Strieder W,Varma A. Approximate Solutions for Nonlinear Diffusion - Reaction Equations from the Maximum Principle.Chem Eng Sci,1988,43(3) :513 ~518.
  • 8Finlayson B A. Nonlinear Analysis in Chemical Engineering. New York :McGraw - Hill Inc, 1980.73 ~ 97.

二级参考文献5

共引文献2

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部