期刊文献+

子集和问题的改进算法 被引量:3

An Improved Algorithm for the Subset Sum Problem
下载PDF
导出
摘要 1.导言 子集和问题可描述如下:给定n个正整数W=(w1,w2,…,wm)和正整数M,要求寻找这样一个子集I {1,2,…,n},使得∑wi=M,i∈I.子集和问题属于NP完全问题[2],直接的枚举搜索可能遍历问题的所有2n个解空间,即直接搜索最坏情况下的时间复杂性为O(2n). Due to the importance of the subset sum problem in cryptosystem,in the past two decade,much effort has been done in order to find techniques that could lead to practical algorithms with reasonable running time- Based on the two-list four-table algorithm,this paper proposes an improved algorithm for the solution of subset sum problem. To find a solution for the n-element subset problem,the proposed algorithm needs O(2^(n/2-ε)) memory, 1≤ε≤εn/4,and in O(ε(2^(n/2)) time. The theoretic analysis and the computational experiments show that our proposed algorithm can solve the subset problem instances that can't be solved before,thus it is an improved result over the past researches.
出处 《计算机科学》 CSCD 北大核心 2003年第11期16-17,76,共3页 Computer Science
基金 国家自然科学基金(60273075) 国家"八六三"高技术研究发展计划(863-306 ZD-11-01-06)
关键词 子集和 改进算法 Subset sum problem NP-complete Two-list four-table algorithm Merkle-Helman cryptosystem
  • 相关文献

参考文献10

  • 1Garey M R,Johnson D S. Computers and intractability: A guide to the theory of NP-Completeness. San Francisco: W. H. Freeman and Co,1979
  • 2Chor B, Rivest R L.A knapsack-type public key cryptosystem based on arithmetic in finite fields. IEEE Trans. Inform. Theory, 1988,34 (5):901~909
  • 3Laih C-S, Lee, J-Y, Ham L, Su Y-K. Linearly shift knapsack public-key cryptosystem. IEEE J. Selected Areas Commun,1989, 7 (4) :534~539
  • 4Horowitz E,Sahni S. Computing partitions with applications to the knapsack problem. J. ACM,1974,21(2): 2 72~292
  • 5Schroeppel R,Shamir A. A T= O(2n/2),S=O(2n/4) algorithm for certain NP-complete problems. SIAM J. Comput, 1981,10 (3) :456-464
  • 6Ferreira A G. A parallel time/hardware tradeoff T@H= O(2n/2) for the knapsack problem. IEEE Trans. Comput, 1991,40(2): 221~225
  • 7Lou D C, Chang C C. A parallel two-list algorithm for the knapsack problem. Parallel Computing, 1997,22: 1985~ 1996
  • 8Chang H K-C,Chen J J-R,Shyu S-J. A parallel algorithm for the knapsack problem using a generation and searching technique. Parallel Computing,1994,20(2) :233~243
  • 9Cornuejols G,Dawande M. A class of hard small 0-1 programs. 6th International IPCO Conference. Lectures Notes in Computer Science 1998,1412:284~293
  • 10Aardal K,Bixby R E,Hurkens C A J,Lenstra A K,et al. Market split and basis reduction: towards a solution of the Cornuejils Dawande instances. In: 7th Intl. IPCO Conf. Lecture Notes in Computer Science, 1999,1610:1 ~ 16

同被引文献12

  • 1王蔚,邱伟星.整数的带余除法在子集和问题中的应用[J].计算机工程,2011,37(S1):183-185. 被引量:2
  • 2黄复贤.24点问题的一种简易算法的设计与实现[J].电子科技,2005,18(9):52-55. 被引量:1
  • 3de Koster R,Le-Duc T,Roodbergen K J. Design and control of warehouse order picking: A literature review [J]. European Journal of Operational Research, 2007,182 (2) : 481-501.
  • 4Yoon C S,Sharp G P. A structured procedure for analysis and design of order pick systems[J]. IIE Transactions, 1996, 28 (5) :379-389.
  • 5Ratliff H D, Rosenthal A S. Order-picking in a rectangular warehouse-A solvable case of the traveling salesman problem [J]. Operations Research, 1983,31(3) : 507-521.
  • 6Gibson DR, Sharp G P. Order batehing procedures[J]. European Journal of Operational Research, 1992,58 (1) : 57-67.
  • 7Yu M F, de Koster R. The impact of order batching and picking area zoning on order picking system performance[J]. European Journal of Operational Research, 2009, 198 (2) : 480-490.
  • 8GuJX, Goetschalckx M, Mcginnis L F. Research on warehouse design and performance evaluation: A comprehensive review[J]. European Journal of Operational Researeh, 2010,203 (3) : 539-549.
  • 9Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms[M]. New York: McGraw-Hill, 1990.
  • 10张俊,陶婧.子集和问题的扩展研究[J].芜湖职业技术学院学报,2010,12(2):44-46. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部