期刊文献+

支持向量机模型在渗流监测中的应用 被引量:11

Application of Support Vector Machines Model in Seepage Monitoring
下载PDF
导出
摘要 提出了基于一种支持向量机 (SVM)的渗流监测方法。该方法采用结构风险最小化原则 ,能够在对小样本学习的基础上 ,对其他样本进行快速、准确的拟合预测 ,具有更好的泛化性能和精度 ,减少了对经验的依赖。在算例中 ,基于 SVM的非线性特点 ,根据土石坝的实测资料建立了渗流监测模型 。 Because seepage monitoring is an uncertain, nonlinear system, it is difficult to describe such nonlinear characteristics of system by traditional methods, so the pitometer head could not be accurately forecasted. The authors presented a novel seepage monitoring method in which an improved Support Vector Machines (SVM) algorithm was applied and the principle of Structural Risk Minimization (SRM) was embedded into the SVM. Therefore, on the basis of learning by fewer samples the presented method could conduct fast and accurate head forecasting with other samples fitting head forecasting. The presented method is more generalized and its dependence on experience is weakened. As a example, based on the nonlinear characteristic of SVM, seepage monitoring model is built according to factual data of soil dam, which lays a foundation for head forecast and safety monitoring.
出处 《水电能源科学》 2005年第1期86-88,共3页 Water Resources and Power
关键词 渗流监测 支持向量机 非线性 seepage monitoring support vector machines nonlinear system
  • 相关文献

参考文献4

二级参考文献25

  • 1赵辉 李进生 郭秀林.地下水位动态的人工神经网络研究[A]..农业节水与地下水开发利用[C].,2000..
  • 2[1]Hippert H S, Pefreira C E, Souza R C. Neural Network for Short-Term Load Forecasting: A Review and Evaluation [ J ]. IEEE Trans on Power System, 2001,16(2) :44-54.
  • 3[2]VN Vapnik. The nature of statistical learning theory[M]. New York: Springer, 1995. 72-236.
  • 4[3]Muller K R, Smola A J, Ratsch G, et al. Prediction Time Series with Support Vector Machines[ C]. Proc of ICANN97,Springer LNCS 1327:999-1 004.
  • 5[4]Francis E H Tay, Cao Li-juan. Application of support vector machines in financial time series forecasting [J]. Omega, 2001,29:232-239.
  • 6[5]Bo-Juen Chen, et al. Load forecasting using support vector machines: A study on EUNITE competition 2001 [ DB/OL ]. Available at http ://neuron. tuke. sk/competition/
  • 7[6]Zhang Q, Benveniste A. Wavelet Network[J].IEEE Trans on Neural Network, 1992, 3(9):889-898.
  • 8[7]Smola A J. Learning with Kernels [ D ]. PhD thesis, Technische Universitat Berlin, 1998.
  • 9[8]Ralotomamenjy A, Canu S. Learning, frame,reproducing kernel and regularization [ R ].Technical Report TR2002-01, perception, systemes et Information, INSA de Rouen, 2002.
  • 10[9]Shevade S K, Keerthi S C. Bhattacharyy et al.Improvements to SMO algorithm for SVM regression [ J ]. IEEE Trans on Neural Networks,2000,11(5) :1 188-1 193.

共引文献197

同被引文献120

引证文献11

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部