期刊文献+

主动约束层阻尼杆结构纵振的多层谱有限元法 被引量:1

Multiple-Layer Spectral Finite Element Method for Longitudinal Vibration of Rods Treated with Active Constrained Layer Damping
下载PDF
导出
摘要 针对主动约束层阻尼(ACLD)覆盖的杆结构的纵向振动,采用一种新型的多层谱有限元法(MLSFEM)进行研究.该方法能避开使用谱有限元法(SFEM)须求解带未知参数的高阶特征方程以形成动力形状函数的困难,同时又保留SFEM仅用很少单元却精度高的优点.采用MLSFEM的典型算例表明,该方法比有限元法(FEM)更有效、精确.此外,研究了不同控制策略对悬臂ACLD杆结构频响函数的影响. For longitudinal vibration analysis of rods fully treated with active constrained layer damping (ACLD), a new type of spectral finite element method (SFEM) called multiple-layer spectral finite element method (MLSFEM) was presented. It is shown that the new technique MLSFEM can avoid difficulties occurring in solving characteristic equations with higher orders and unknown parameters for forming dynamic shape functions of SFEM, but it still retains advantages of a very few elements and high accuracy of SFEM. The results of a typical example with MLSFEM demonstrate its much higher effectiveness and accuracy than those of the finite element method (FEM). Furthermore, the effects of different control strategies on the frequency response function (FRF) of a cantilevered rod/ACLD system were studied.
作者 王淼 方之楚
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第2期302-305,共4页 Journal of Shanghai Jiaotong University
关键词 主动约束层阻尼 纵向振动 谱有限单元法 多层谱有限单元法 Finite element method Multilayers Numerical methods Partial differential equations Shear stress Vibrations (mechanical)
  • 相关文献

参考文献9

  • 1王淼,方之楚.主动约束层阻尼梁结构复杂耦合振动的多层谱有限元法[J].上海交通大学学报,2005,39(1):87-90. 被引量:13
  • 2Baz A. Boundary control of beams using active constrained layer damping [J]. Journal of Vibration and Control, 1997,119(2):166- 172.
  • 3Baz A. Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping[J]. Journal of Smart Material and Structures, 2000,9 (3): 372- 377.
  • 4Shen I Y. A variational formulation, a work-energy relation and damping mechanism of active constrained layer damping treatment[J]. Journal of Vibration and Acoustics, 1997,119(2) :192-199.
  • 5Liao W H, Wang K W. A new active constrained layer configuration with enhanced boundary conditions [J]. Journal of Smart Material and Structures, 1996,5(5):638- 648.
  • 6Lee U, Kim J. Spectral element modeling for the beams treated with active constrained layer damping [J]. International Journal of Solids and Structures,2001,38(32- 33): 5679- 5702.
  • 7Lee U, Kim J, Leung A Y T. et al. The spectral element method in structural dynamics [J]. The Shock and Vibration Digest, 2000,32 (6): 451 - 465.
  • 8Wang G, Wereley N M. Spectral finite element analysis of sandwich beams with passive constrained layer damping [J]. Journal of Vibration and Acoustics,2002,124 (3): 376- 386.
  • 9Timoshenko S P, Young D H, Weaver W J. Vibration problems in engineering[M]. 4th ed. New York:John Wiley & Sons Inc,1974.

二级参考文献9

  • 1Doyle J F. A spectrally formulated finite element method for longitudinal wave propagation[J]. International Journal of Analytical and experiment,1998,3(1):1--5.
  • 2Lee U, Kim J, Leung Y T. The spectral element method in structural dynamics[J]. The Shock & Vi-bration Digest, 2000,32 (6) : 451 -- 465.
  • 3Baz A. Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping[J]. Journal of Smart Material and Structures, 2000,9 (3) : 372 -- 377.
  • 4Lee U, Kim J. Spectral element modeling for thebeams treated with active constrained layer damping[J]. International Journal of Solids and Structures,2001,38(32/33) : 5679-- 5702.
  • 5Wang G,Wereley N M. Spectral finite element analysis of sandwich beams with passive constrained layer damping[J]. Journal of Vibration and Acoustics,2000,124 (3) : 376-- 386.
  • 6Mead D J ,Markus S. The forced vibration of a threelayer damped sandwich beam with arbitrary boundary conditions[J]. Journal of Sound of Vibration, 1969,10(2): 163-- 175.
  • 7ANSI-IEEE std 176-1987, IEEE Standard on Piezo-electricity [S].
  • 8McTavish D J, Hughes P C. Modeling of linear viseoelastie spaee struetures [J]. Journal of Vibrationand Acoustics, 1993, 115(1):103--113.
  • 9Golla D F, Hughes P C. Dynamics of viscoelastic structures-a time domain finite element formulation[J]. Journal of Applied Mechanics, 1985,52 (6):897--906.

共引文献12

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部