期刊文献+

有限区间上的分数阶扩散波方程的解 被引量:6

Fractional diffusionwave equation on finite interval
下载PDF
导出
摘要 考虑如下的分数阶扩散 波方程:Dαtu(t,x) = a2Dβxu(t,x), t >0,0< x < l,0<α≤2,0<β≤2,u(0,t) =0, u(l,t) =θ(t), t≥0,u(0,x) =φ(x), 0≤x≤ l(如果0<α≤1),ut(0,x) =0, 0≤x≤ l(如果1<α≤2).其中Dαt 和Dβx 分别为关于时间t 和空间x 的α次、β次 Caputo分数次算子, θ(t)为给定的函数. 利用 Dαt 和 Dβx 的变换, 给出该问题的解的表达式. The following fractional diffusionwave equation on finite intervalD~α_tu(t,x)=a^2D~β_xu(t,x), t>0,0<x<l,0<α≤2,0<β≤2, u(0,t)=0,u(l,t)=θ(t), t≥0, u(0,x)=φ(x), 0≤x≤l(if 0<α≤1), u_t(0,x)=0, 0≤x≤l(if 1<α≤2).is discussed.Where D~α_t and D~β_x are Caputo fractional derivatives of order α and β with respect to t and x,respectively,θ(t)is a given function.Applying the Laplace transforms for D~α_t and D~β_x,the representness of solution is obtained.
作者 张淑琴
出处 《西北师范大学学报(自然科学版)》 CAS 2005年第2期10-13,共4页 Journal of Northwest Normal University(Natural Science)
关键词 分数次导数 分数阶扩散-波方程 LAPLACE变换 Mittag-Leffler函数 fractional derivative fractional diffusionwave equation Laplace transform MittagLeffler functions
  • 相关文献

参考文献4

  • 1段俊生,徐明瑜.有限区间上的分数阶扩散-波方程定解问题与Laplace变换[J].高校应用数学学报(A辑),2004,19(2):165-171. 被引量:9
  • 2Kilbas A A, Pierantozzi T, Trujillo J. On the solution of fractional evolution equations[J]. J Phy A: Math Gen,2004, 37: 3271-3283.
  • 3Podlubny I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
  • 4Samko S G, Kilbas A A, Marichev O I. Fractional Integral and Derivatives (Theory and Applications)[M].Switzerland: Gordon and Breach, 1993.

二级参考文献12

  • 1Giona M,Roman H E. Fractional diffusion equation for transport phenomena in random media[J].Phys, A,1992,185:87-97.
  • 2Wegner J L,Norwood F R. Nonlinear Waves in Solids[M]. New York:The American Society of Mechanical Engineers, 1995,93-97.
  • 3Wyss W. Fractional diffusion equation[J]. J. Math. Phys. ,1986,27(11):2782-2785.
  • 4Schneider W R,Wyss W. Fractional diffusion and wave equations[J].J. Math. Phys.,1989,30(1):134-144.
  • 5Mathai A M,Saxena R K. The H-function with Applications in Statistics and Other Disciplines [M]. New Delhi:Wiley Eastern Limited,1978.
  • 6Glockle W G,Nonnenmacher T F. Fox function representation of Non-Debye relaxation processes [J]. J Statist. Phys.,1993,71(3):741-757.
  • 7Mainardi F. The fundamental solutions for the fractional diffusion-wave equation[J]. Appl. Math.Lett.,1996,9(6):23-28.
  • 8Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena[J]. Chaos,Solitons and Fractals, 1996,7 (9):1461-1477.
  • 9Gorenflo R,Luchko Y,Mainardi F. Wright functions as scale-invariant solutions of the diffusionwave equation[J]. J. Comput. Appl. Math.,2000,118(1):175-191.
  • 10Nigmatullin R R. The realization of the generalized transfer equation in a medium with fractal geometry[J]. Phys. Stat. Sol. B, 1986,133: 425-430.

共引文献8

同被引文献55

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部