期刊文献+

基于模糊系统的新型CMAC神经网络及学习算法 被引量:5

A New CAMC and Its Learning Algorithm based on Fuzzy System
下载PDF
导出
摘要 提出了一种基于模糊系统的新型CMAC神经网络,该神经网络与 CMAC相比,它不需要对输入分量进行量化,而且能够根据实际问题的性质来初始化网络参数,有利于提高网络的收敛速度.与一般的FCMAC相比,它的逼近精度更高,能够解决 CMAC系列网络逼近精度不高的弱点,所以此网络的实际应用前景更广阔.所做的大量仿真实验也证明了这一特性. In this paper, a new CMAC and its learning algorithm based on the fuzzy system is presented. Compared with CMAC, there is no need for discretization of input components. Besides, the parameters of the presented network can be initiated according to the real problems. Therefore, its convergence rate will be promoted. Compared with general FCMAC, its effect of approximation is more accurate. It can solve the fatal false that the neural network of the CMAC and general FCMAC can not avoid. The neural network presented in the paper will be more applicable. Finally, many simulation results also demonstrate its advantage.
出处 《江南大学学报(自然科学版)》 CAS 2005年第1期27-32,70,共7页 Joural of Jiangnan University (Natural Science Edition) 
关键词 小脑神经网络 模糊系统 函数逼近 CMAC fuzzy system function approximation
  • 相关文献

参考文献5

二级参考文献32

  • 1邓志东,孙增圻.利用线性再励的自适应变步长快速BP算法[J].模式识别与人工智能,1993,6(4):319-323. 被引量:37
  • 2邓志东,孙增圻.多层前馈感知器的高阶序贯非线性Kalman滤波学习算法[J].控制理论与应用,1994,11(3):381-384. 被引量:4
  • 3[1]Albus J S.Data Storage in the Cerebellar Model Articulation Controller (CMAC).Transaction of ASME J. Dynam. Syst. Meas. Control, 1975,97:228-233
  • 4[2]Pham D T,Sukkar M F. Supervised Adaptive Resonance Theory Nerual Network for Modelling Dynamic System. IEEE International Conference on Intelligent Systems for the 21 st Century,Canada, 1995-10,3:2500-2505
  • 5[3]Wasserman P D.Advanced Methods in Neural Computing. New York:Van Norstrand Reinhold, 1993
  • 6邓志东,自动化学报,1995年,21卷,1期,65页
  • 7邓志东,中国计算机报,1994年,17期,77页
  • 8邓志东,第一届全球华人智能控制与智能自动化大会论文集,1993年
  • 9邓志东,模式识别与人工智能,1993年
  • 10邓志东,自动化学报,1993年

共引文献65

同被引文献28

  • 1刘晓军,阎朝鼎.一种新型的CMAC神经网络[J].中国科技信息,2005(14):45-45. 被引量:1
  • 2邓志东,孙增圻,张再兴.一种模糊CMAC神经网络[J].自动化学报,1995,21(3):288-294. 被引量:50
  • 3S.Y.Yun, S.Namkoong, A Performance Evaluation of Neural Network Models in Traffic Volume Forecasting,1998.
  • 4Tomoyoshi Shiraishi. A Development of Traffic Prediction System Based on Real-time.
  • 5J. Ozawa, I. Hayashi, Formulation of CMAC-Fuzzy System[C]. IEEE International Conference on Fuzzy Systems, 1179-1186, 1992.
  • 6M. N. Nguyen, D. Shi, C. Quek, Self-Organizing Gaussian Fuzzy CMAC with Truth Value Restriction[C]. Proceedings of IEEE International Conference of Information Technology and Applications(ICITA), Sydney, Australia, 2005.
  • 7李章 张宁 刘祥源 等.舰用增压锅炉装置[M].北京:海潮出版社,2000..
  • 8周明 孙树栋.遗传算法原理及其应用[M].北京:国防工业出版社,2000..
  • 9LIN Chihmin, PENG Yafu. Adaptive CMAC-based supervisory control for uncertain nonlinear systems [ J ]. IEEE Transactions on Systems ,34-2 : 1248-1260.
  • 10韩靖.舰用增压锅炉热平衡及动态仿真研究[D].哈尔滨:哈尔滨工程大学.2006:46-57.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部