期刊文献+

基于径向基函数神经网络的预测方法研究 被引量:19

Prediction method research based on radial basis function neural network
下载PDF
导出
摘要 提出了一种新的确定径向基函数中心的方法. 该方法首先利用交叉迭代模糊聚类算法确定样本数据的模糊聚类中心,然后采用正则化正交最小二乘法从模糊聚类中心中进一步优选径向基函数中心,并将广义交叉有效性指标作为停止选择过程的标准. 该方法集中了交叉迭代模糊聚类和正则化正交最小二乘法的优势,可有效减小网络规模,提高网络推广能力,而且能够避免数值病态情况发生. 以新疆伊犁河雅马渡站的年径流量预测为例进行计算,其结果验证了所提方法的有效性. A new method that determines radial basis function centers is proposed. First, fuzzy clustering centers of samples are determined by Cross Iterative Fuzzy Clustering Algorithms (CIFCA). Second, radial basis function centers are further optimized from fuzzy clustering centers by Regularized Orthogonal Least Squares (ROLS). The criterion for halting the above selection process is the index of the generalized cross-validation. The proposed method centralizes the advantages of CIFC A and ROLS, which can decrease network scale, improve generalization performance and avoid ill-conditioning of learning problems. The proposed method is applied to the annual runoff prediction, in which samples are from Yamadu Hydrological Station in Xinjiang Uigur Autonomous Region. The results demonstrate the validity of the proposed method.
作者 丁涛 周惠成
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2005年第2期272-275,共4页 Journal of Harbin Institute of Technology
关键词 径向基函数神经网络 模糊聚类 正则化正交最小二乘 广义交叉有效性 Feedforward neural networks Forecasting Fuzzy sets Neural networks
  • 相关文献

参考文献11

  • 1陈守煜.模糊模式识别交叉迭代模型与收敛性[J].大连理工大学学报,2001,41(3):264-267. 被引量:33
  • 2中国水利部.水文情报预报规范[M].北京:中国水利水电出版社,2000.11-12.
  • 3BIANCHINI M, FRASCONI P, GORI M. Learning without local minima in radial basis function networks [ J ]. IEEE Transon Neural Networks, 1995, 6(3): 749 - 756.
  • 4CHEN S, COWAN C F N, GRANT P M. Orthogonal least squares learning algorithm for radial basis function networks [ J ]. IEEE Transactions on Neural Networks,1991, 2: 302 - 309.
  • 5KAVLI T. ASMOD: an algorithm for adaptive splines modeling of observation data[J]. International Journal of Control, 1993, 58:947-968.
  • 6BARRON A R, XIAO X. Discussion of multivariate adaptive regression splines [ J ]. Annals of Statistics,1991, 19: 67 - 82.
  • 7ORR M J L. Regularised center recmitment in radial basis function networks [ R ]. [ s. l. ]: Edinburgh University, 1993.
  • 8CHEN S, CHNG E S, ALKADHIMI K. Regularized orthogonal least squares algorithm for constructing radial basis function networks [ J ]. International Journal of Control, 1996, 64:829-837.
  • 9ORR M J L. Regularisation in the selection of radial basis function centers [ J ]. Neural Computation, 1995, 7(3): 606 -623.
  • 10BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[ M ]. New York: Plenum Press, 1981.

二级参考文献3

共引文献33

同被引文献166

引证文献19

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部