期刊文献+

THE GRAMMATICAL COMPLEXITY AND SYMMETRY BREAKING OF SYMMETRICAL DYNAMICAL SYSTEMS 被引量:2

THE GRAMMATICAL COMPLEXITY AND SYMMETRY BREAKING OF SYMMETRICAL DYNAMICAL SYSTEMS
全文增补中
导出
摘要 In this paper we discuss the grammatical complexity of dynamical systems, Which satisfy antisymmetric condition and their iteratve interval can be diveded into three monotone subintervals. A necessary and sufficient candition for the language determined by this system being regular language is proved. Using the minimal DFA, symmetry breaking is analysed. In this paper we discuss the grammatical complexity of dynamical systems,which satisfy antisymmetric condition and their iteratve interval can be divided into three monotone subintervals. A necessary and sufficient condition Jor the language determined by this system being regular language is proved.. Using the minimal DFA, symmetry breaking is analysed.
作者 卢钦和
机构地区 Mathematics Department
出处 《苏州大学学报(自然科学版)》 CAS 1994年第2期87-94,共8页 Journal of Soochow University(Natural Science Edition)
基金 This work is supported by National Basie Research Poject"Nonliear Science
关键词 动力系统 对称性 DFA 分析方法 突变论 complexity , minimal DFA,symmetry breaking.
  • 相关文献

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部