期刊文献+

草莓采摘机器人的研究:Ⅱ.基于图像的草莓重心位置和采摘点的确定 被引量:48

Study on strawberry harvesting robot: Ⅱ. Images based identifications of strawberry barycenter and plucking position
下载PDF
导出
摘要 成熟草莓果实重心和采摘点的确定是草莓采摘机器人采摘收获作业中的关键问题。采用LRCD (lumi nanceandredcolordifference)方法分割草莓图像。在RGB色彩模型中 ,求得图像中每个像素的色差 ,在灰度图像中显示以色差值为灰度值的色差图像 ,取合适的阈值对该图像二值化 ,得到分割后的草莓图像 ;提取分割后草莓图像的几何特征 ,从而确定草莓的重心位置和采摘点。采用本文所述的机器人视觉系统 (CCD成像像素 75 3× 5 82 ,像素中心距 10 μm× 10 μm)的试验结果表明 ,其采摘点位置误差 <3mm。利用LRCD方法能够很好的将成熟草莓与背景分离 ,通过提取分割后草莓图像的几何信息 ,可确定草莓重心和采摘点的位置。 During the strawberry collection process by robot, the crucial element to ensure the picking precision is the determinations of the ripe strawberry barycenters and the plucking positions. The LRCD (luminance and red color difference) method was adopted to dissect the image of strawberry. The Chromatism of each pixel in the RGB color image was calculated and the result showed in a gray image. The segmented image was gained by translating the gray image to a binary image after selecting an appropriate threshold. The barycenter of strawberry and the plucking position were ascertained by extracting geometry feature of the segmented strawberry image. The result reveals that the eccentricity of the plucking position is not more than 3mm in the robot vision system(CCD pixel 753×582,distance between pixels 10μm×10μm) in this paper. Ripe strawberry can be separated easily from the complex background by the LRCD method. The method is valid for pick-up of red object from a complex background.
出处 《中国农业大学学报》 CAS CSCD 北大核心 2005年第1期48-51,共4页 Journal of China Agricultural University
基金 国家高技术研究发展计划资助项目 (2 0 0 1AA4 2 2 30 0 )
关键词 草莓收获 机器人 LRCD变换 色差 strawberry-collection robot LRCD chromatism
  • 相关文献

参考文献9

  • 1曹其新,吕恬生,永田雅辉,王红永.草莓拣选机器人的开发[J].上海交通大学学报,1999,33(7):880-884. 被引量:31
  • 2张铁中,林宝龙,高锐.水果采摘机器人视觉系统的目标提取[J].中国农业大学学报,2004,9(2):68-72. 被引量:27
  • 3Cao Qixin, Masateru N, Masafurni M, et al. Study on grade judgment of fruit vegetables using machine vision (Part 2)[J]. Judgment for Several Varieties of Strawberry by Developed Software, 1996, 8(4):228-236.
  • 4Nagata M, Kinoshita O, Asano K, et al. Studies on automatic sorting system for strawberry (Part 1)[J]. Journal of Japanese Society of Agricultural Machinery,1996, 58(5):57-66.
  • 5Nagata M, Kinoshita O, Asano K, et al. Studies on automatic sorting system for strawberry (Part 2)[J]. Journal of Japanese Society of Agricultural Machinery,1996,58(6):61-67.
  • 6Nagata M, Kinoshita O, Asano K,et al. Studies on automatic sorting system for strawberry (Part 31)[J]. Journal of Japanese Society of Agricultural Machinery,1997,59(1):43-48.
  • 7Masateru N, Cao Qixin, Masafumi M, et al. Study on grade judgment of fruit and vegetables using machine vision(Part 2)[J]. Journal of Society of High Technology in Agriculture (Japan), 1996,8(4):140-145.
  • 8Slaughter D, Harrel R. Discriminating fruit for robotic harvest using color in natural outdoor scenes[J]. Transactions of the ASAE, 1989,32(2):757-763.
  • 9Duke M, Takashi K, Yoshinobu O, et al. A color model for recognition of apples by a robotic harvesting system[J]. Journal of JSAM, 2002, 64(5):123-133.

二级参考文献4

共引文献55

同被引文献411

引证文献48

二级引证文献724

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部