摘要
本文通过推广凸共轭函数和次梯度的概念,建立了非线性规划问题的一类对偶理论——Ω共轭对偶理论.研究结果表明,许多关于非线性最优化对偶性方面的结论都是本文的特殊情况.
By generalizing the concepts of convex conjugate functions and subdifferentials, a duality theory for nonlinear optimization problems——Ω conjugate duality theory is developed, which shows that many results in duality of nonlinear optimization are the special cases for the special Ω's.
出处
《应用数学》
CSCD
北大核心
1993年第3期249-255,共7页
Mathematica Applicata
关键词
非线性规划
对偶理论
共轭对偶
Nonlinear optimization
Duality theory
Conjugate duality
Subdifferential
Conjugate function