摘要
本文研究了两个空间变量的拟线性退缩抛物方程Cauchy问题广义解的正则性问题.推广了文献[1]的结果.
This paper deals with Cauchy problem for quasilinear degenerate parabolic equations with two-dimensional space of the type u_t= △(u^(1+δ)+b_i(u)-x_i,(x,t) ∈ R_t,(1) u(x,0)=u_0(x), x ∈R^2.(2)
At first, the necessary estimates for the solutions of regularized problems are made.Then the regularity of generalized solutions is proved. And the existence of generalized solutions is studied.
出处
《应用数学》
CSCD
北大核心
1993年第4期432-438,共7页
Mathematica Applicata
关键词
拟线性
初值问题
抛物型方程
Quasilinear parabolic equation
Cauchy problem
Regularity of generalized solution