摘要
文[1]给出精确解析法,可用于求解任意变系数微分方程,所得到的解具有二阶收敛精度.在此基础上,本文以变截面梁弯曲为例,给出一个高精度的算法.不增加工作量的情况下可达到四阶收敛精度.具有计算快,简单等特点,文末给出算例,仅用很少的单元即可获得高的收敛精度,表明了本文理论的正确性.
The exact analytic method was given by[l]. It can be used for arbitrary variable coefficient differential equations and the solution obtained can have the second order convergent precision. In this paper, a new high precision algorithm is given based on [1], through a bending problem of variable cross section beams. It can have 'the fourth convergent precision without increasing computation work. The present computation method is not only simple but also fast. The numerical examples are given at the end of this paper which indicate that the high convergent precision can be obtained using only a few elements. The correctness of the theory in this paper is confirmed.
出处
《应用数学和力学》
CSCD
北大核心
1993年第3期189-194,共6页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助的课题
关键词
精确解析法
高精度收敛
微分方程
exact analytic method, bending of beam, high convergent precision