摘要
用最小二乘配点法对正交各项异性薄板和双曲扁壳的弹性问题进行了分析.文中采用Huber—Mises屈服函数在各向异性问题中的推广形式,把材料的塑性变形作为等效塑性荷载处理,并取双五次样条函数为位移试函数,推出了迭代公式.算例证明,该法精度高、收敛快,所需计算机内存少,是简单、精确、高效的.
In this paper, the least-squares collocation method is employed to analyze the elasto-plastic problems of orthogonal thin plates and doubly-curved shallow shells. By using the Huber-Mises criterion extended by Hill and taking double fifth B-spline functions as the trial functions, we have derived the basic iteration formulas. Numerical examples demonstrate the simplicity, accuracy and efficiency of the present method.
出处
《应用力学学报》
CAS
CSCD
北大核心
1993年第2期80-84,共5页
Chinese Journal of Applied Mechanics
关键词
复合材料
板
壳体
结构力学
弹塑性
orthogonal material
elasto-plastic analysis
spline function
double-curved shallow shell
least-squares collocation method.