摘要
Closed Field Unbalanced Magnetron Sputter Ion Plating (CFUBMSIP) systems have been used increasingly for PVD coating in recent years. TiN and CrN coatings, commonly used as the basic coating for a number of different hard coatings, have been chosen to study the coating process parameters for the CFUBMSIP system. In this paper, the process parameters, such as substrate temperature, substrate bias and OEM control, have been carefully examined to achieve hard and wear-resistance coatings with good adhesion. The coating structure and orientation were found to change according to the coating parameters. The Rockwell test and Scratch test were carried out to examine the coating adhesion; pin-on-disc testing was used to estimate the wear-resistant; micro-hardness was also used to determine coating hardness. HSS drill testing has been carried out to study the general properties of the coating for cutting tool application. A combination of process parameters can be selected to achieve good performance for the TiN and CrN coatings.
Closed Field Unbalanced Magnetron Sputter Ion Plating (CFUBMSIP) systems have been used increasingly for PVD coating in recent years. TiN and CrN coatings, commonly used as the basic coating for a number of different hard coatings, have been chosen to study the coating process parameters for the CFUBMSIP system. In this paper, the process parameters, such as substrate temperature, substrate bias and OEM control, have been carefully examined to achieve hard and wear-resistance coatings with good adhesion. The coating structure and orientation were found to change according to the coating parameters. The Rockwell test and Scratch test were carried out to examine the coating adhesion; pin-on-disc testing was used to estimate the wear-resistant; micro-hardness was also used to determine coating hardness. HSS drill testing has been carried out to study the general properties of the coating for cutting tool application. A combination of process parameters can be selected to achieve good performance for the TiN and CrN coatings.
出处
《材料热处理学报》
EI
CAS
CSCD
北大核心
2004年第05B期841-846,共6页
Transactions of Materials and Heat Treatment