期刊文献+

Effect of Pearlite Interlamellar Spacing on Predominant Abrasive Wear Mechanism of Fully Pearlitic Steel 被引量:1

Effect of Pearlite Interlamellar Spacing on Predominant Abrasive Wear Mechanism of Fully Pearlitic Steel
下载PDF
导出
摘要 The aim of this investigation was the determination of the predominant wear mechanism on three-body abrasion of fully pearlitic low alloy steel. Furthermore, the effect of pearlite interlamellar spacing on wear behavior was investigated. For this purpose, the samples were subjected to the different heat treating to attaining different interlamellar spacing. Mechanical properties such as hardness, yield strength, tensile strength, elongation, and impact toughness were evaluated. Three body abrasion tests were conducted under ASTM standard condition using a rubber wheel abrasion test apparatus. Abraded surface and wear debris were investigated by light optical microscopy and scanning electron microscopy. The results showed that wear resistance of fully pearlitic steel depended to pearlite interlamellar spacing the and lower spacing has the greater wear resistance, so it may be due to subsurface work hardening and interlamellar spacing and cementite in fine and/or coarse pearlite, that influence on surface destruction during wear. Although during wear process the several mechanisms play roles, but study of surface and debris shows that with decreasing interlamellar spacing, the predominant mechanism wear changed from ploughing to cutting mode. The aim of this investigation was the determination of the predominant wear mechanism on three-body abrasion of fully pearlitic low alloy steel. Furthermore, the effect of pearlite interlamellar spacing on wear behavior was investigated. For this purpose, the samples were subjected to the different heat treating to attaining different interlamellar spacing. Mechanical properties such as hardness, yield strength, tensile strength, elongation, and impact toughness were evaluated. Three body abrasion tests were conducted under ASTM standard condition using a rubber wheel abrasion test apparatus. Abraded surface and wear debris were investigated by light optical microscopy and scanning electron microscopy. The results showed that wear resistance of fully pearlitic steel depended to pearlite interlamellar spacing the and lower spacing has the greater wear resistance, so it may be due to subsurface work hardening and interlamellar spacing and cementite in fine and/or coarse pearlite, that influence on surface destruction during wear. Although during wear process the several mechanisms play roles, but study of surface and debris shows that with decreasing interlamellar spacing, the predominant mechanism wear changed from ploughing to cutting mode.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期1207-1213,共7页 Transactions of Materials and Heat Treatment
关键词 层间距 珠光体 三体磨损 three-body abrasive wear, interlamellar spacing, pearlite, wear mechanisms, steel
  • 相关文献

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部