摘要
本文针对多参数变量和多状态变量的离散型有势系统的非线性稳定问题,提出了活化方法,导出了活化势函数和活化平衡方程.活化方法是弹性稳定理论中Liapunov-Schmidt方法的改进和提高,它比通常的摄动方法更加一般化、规范化.活化势函数可变换成标准突变势函数,活化平衡方程可作为分岔方程.本文的研究将促进弹性稳定理论与突变理论和分岔理论的结合.
For nonlinear stability problems of discretized conservative systems with multiple parameter variables and multiple state variables, the activation method is put forward, by which activated potsntial functions and activated equilibrium equations are derived. The activation method is the improvement and anhancement of Liapunov-Schmidt method in elastic stability theory. It is more generalized and. more normalized than conventional perturbation methods. The activated potential functions may be transformed into normalized catastrophe potential functions. The activated equilibrium equations may be treated as bifurcation equations. The researches in this paper will motivated the combination of elastic stability theory with catastrophe theory and bifurcation thsory.
出处
《应用数学和力学》
EI
CSCD
北大核心
1993年第10期873-881,共9页
Applied Mathematics and Mechanics
基金
国家自然科学基金
建设部联合资助项目
关键词
多参数
变量
多状态
非线性稳定
multiple parameter variables, multiple .state: variables, discretized, conservative, nonlinear stability, activation method, asymptotic analyses